Featured Research

from universities, journals, and other organizations

UC Riverside Biochemists Develop Technology To Increase Vitamin C In Plants

Date:
March 6, 2003
Source:
University Of California - Riverside
Summary:
Biochemist Daniel R. Gallie at the University of California, Riverside and his research team of Zhong Chen, Todd Young, Jun Ling, and Su-Chih Chang report in the March 18, 2003, issue of the Proceedings of the National Academy of Sciences (PNAS) that they have developed technology that increases the amount of vitamin C in plants, including grains, by increasing the amount of the enzyme that is responsible for recycling vitamin C.

RIVERSIDE, Calif. -- March 5, 2003 -- Biochemist Daniel R. Gallie at the University of California, Riverside and his research team of Zhong Chen, Todd Young, Jun Ling, and Su-Chih Chang report in the March 18, 2003, issue of the Proceedings of the National Academy of Sciences (PNAS) that they have developed technology that increases the amount of vitamin C in plants, including grains, by increasing the amount of the enzyme that is responsible for recycling vitamin C. "The ability to increase the level of vitamin C in plant food will enhance their nutritive value," said Gallie, who is professor of biochemistry. The research was funded by the U.S. Department of Agriculture and the University of California Agricultural Experiment Station over the last 5 years.

Vitamin C, or ascorbic acid, is essential to prevent diseases, such as scurvy, that affect the connective tissue. It also improves cardiovascular and immune cell function and is used to regenerate vitamin E. In contrast to most animals, humans cannot make vitamin C and it must, therefore, be obtained regularly from dietary sources. Vitamin C is present at high levels in some fruits such as citrus and some green leafy vegetables, but present in low levels in those crops most important to humans such as grains.

"Once used, vitamin C can be regenerated by the enzyme dehydroascorbate reductase or DHAR," explained Gallie. "Through this means, plants recycle the vitamin so that it can be used repeatedly. If vitamin C is not salvaged by DHAR, it is quickly lost."

In the PNAS paper, the authors reason that increasing the amount of DHAR in plants might improve their ability to recycle vitamin C and thereby increase its amount. To examine this, the researchers introduced the gene encoding DHAR from wheat into corn to increase the amount of DHAR by up to 100-fold.

"We found that the increase in DHAR elevated the amount of vitamin C in grain and leaves of corn, showing that the vitamin C content of plants can indeed be elevated by increasing expression of the enzyme responsible for recycling the vitamin," said Gallie.

The researchers achieved similar results using a member of the solanaceae family (this family comprises, for example, potatoes and tomatoes), which was used as a model for non-grain crops.

"This technology improves nutrition by increasing the number of foods from which the vitamin can be obtained as well as increasing the level of the vitamin in those foods which are already good sources of vitamin C," said Gallie.

The current recommended dietary allowance (RDA) of vitamin C is 75 mg for adult women and 90 mg for adult men, which is sufficient to prevent diseases arising from severe vitamin C deficiency such as scurvy. This amount can be obtained through a balanced diet that emphasizes fresh green leafy vegetables and citrus. However, these foods are often not sufficiently represented in the diet and up to 30% of the population fail to achieve the RDA for this vitamin.

"Some studies have indicated that higher amounts of the vitamin may be necessary to ensure good cardiovascular health and immune cell function which has led to a recommendation that the RDA for vitamin C be increased to a minimum of 200 mg," said Gallie. "Increasing the RDA for vitamin C would mean a greater dietary emphasis of foodstuffs rich in the vitamin. Because the number of plant foods rich in vitamin C is limited, our ability to increase the vitamin C content in foods provides an important means by which the level of this vitamin can be increased in green leafy crops as well as in grains and should make it easier for people to obtain enough of the vitamin for their optimal health."

The UCR Department of Biochemistry engages in basic biochemical and molecular biological research and instruction. Areas of research specialization represented within the Biochemistry Department and its Graduate Program span contemporary biochemistry from the cellular to the molecular level and include the following areas of concentration: molecular biology, physical biochemistry, molecular endocrinology, plant biochemistry & molecular biology, signal transduction, and biomedical research.


Story Source:

The above story is based on materials provided by University Of California - Riverside. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - Riverside. "UC Riverside Biochemists Develop Technology To Increase Vitamin C In Plants." ScienceDaily. ScienceDaily, 6 March 2003. <www.sciencedaily.com/releases/2003/03/030306080024.htm>.
University Of California - Riverside. (2003, March 6). UC Riverside Biochemists Develop Technology To Increase Vitamin C In Plants. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2003/03/030306080024.htm
University Of California - Riverside. "UC Riverside Biochemists Develop Technology To Increase Vitamin C In Plants." ScienceDaily. www.sciencedaily.com/releases/2003/03/030306080024.htm (accessed April 21, 2014).

Share This



More Plants & Animals News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins