Featured Research

from universities, journals, and other organizations

Underwater Sensor System Could Protect Reservoirs, Drinking Water

Date:
March 20, 2003
Source:
Penn State
Summary:
A sensor system that can autonomously, continuously and in real-time monitor streams, lakes, ocean bays and other bodies of liquid may help solve problems for environmentalists, manufacturers and those in charge of homeland security, according to Penn State engineers.

A sensor system that can autonomously, continuously and in real-time monitor streams, lakes, ocean bays and other bodies of liquid may help solve problems for environmentalists, manufacturers and those in charge of homeland security, according to Penn State engineers.

"The importance of developing a network sensor technology for operation in liquid environments has recently been highlighted in reports detailing the chemical slurry of antibiotics, estrogen-type hormones, insecticides, nicotine and other chemicals in the rivers of industrialized countries," says Dr. Craig A. Grimes, associate professor of electrical engineering and materials science and engineering. "However, analysis is still done by physically collecting samples and analyzing them back in the laboratory."

Monitoring of rivers downstream from sewage treatment plants, large city water supplies, or the composition of a local pond must all be done by hand. This expensive, time-consuming and sometimes dangerous practice is always time delayed and may miss short duration episodes of pollution or contaminants. Continuous, in-place monitoring would be the easiest, most timely and least expensive way to track changes in bodies of water.

However, underwater monitoring is hampered because water interferes with the radio transfer of information, the most common method used to transfer information in the air. The researchers, who include Grimes; Xiping Yang, William R. Dreschel, Kefeng Zeng and Casey S. Mungle, graduate students, electrical engineering, Penn State; and Keat G. Ong at SenTech Corporation, State College, Pa., looked at a hierarchical, acoustic method to transfer the information from the sensors to the person monitoring the water.

The researchers are looking at systems that can monitor temperature, salinity, acidity and specific chemicals. Some of the same researchers, in collaboration with Dr. Michael Pishko, associate professor chemical engineering and material science at Penn State, are working on an inexpensive, disposable sensor for ricin, the highly poisonous protein found in castor beans and thought to be a potential terrorism agent. Sensors also exist for other harmful chemicals.

In the aqueous sensor network system an uplink node floats on the water's surface and transfers the aqueous network data from the water to the air, where it is received by the command computer.

Beneath the surface, layers of nodes/sensors monitor the water and pass the information along to the uplink. Sending a message from the farthest node direct to the uplink underwater is not possible because of the way water decreases the strength of the acoustic signal, so the researchers use a node-to-node multi-hop information transfer system.

"Node-to-node communication enables wide-area coverage using modest node power levels making practical long-term monitoring," Grimes reported in a paper in the journal Sensors.

After the network of nodes is deployed, floating anchored in place in the water, the system must set up an identification tree. The uplink node broadcasts a signal containing its identity. Every node that receives that broadcast marks the uplink node as its parent node. These nodes then broadcast a signal. Every node that receives that signal, and has not yet identified a parent node, will record the signaling node as its parent and then broadcast to even more distant nodes. A cascade of parent nodes eventually covers the entire system.

Periodically, the network sends data through the system. Each node sends its sensor data to its parent node. That node sends the received data and its own data to its parent node until all the data are received by the uplink node, which converts the signal from acoustic to radio frequency and sends the information through the air to the command, or central, computer for display and evaluation.

The host node stores the sensor data from all the nodes in its memory preserving the identity of the node that produced the data so that water-monitoring personnel can track unusual readings or contaminants to their source location.

The researchers designed the nodes so that the chemical sensors are immersed in water separate from the communication electronics, making it easy to change the sensors on the nodes without having to alter the signaling network.

The National Science Foundation supported this work.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Underwater Sensor System Could Protect Reservoirs, Drinking Water." ScienceDaily. ScienceDaily, 20 March 2003. <www.sciencedaily.com/releases/2003/03/030320073822.htm>.
Penn State. (2003, March 20). Underwater Sensor System Could Protect Reservoirs, Drinking Water. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2003/03/030320073822.htm
Penn State. "Underwater Sensor System Could Protect Reservoirs, Drinking Water." ScienceDaily. www.sciencedaily.com/releases/2003/03/030320073822.htm (accessed July 29, 2014).

Share This




More Earth & Climate News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Climate Change Could Cost Billions According To White House

Climate Change Could Cost Billions According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
Rat Infestation at Paris' Tuileries Garden

Rat Infestation at Paris' Tuileries Garden

AFP (July 29, 2014) An infestation of rats is causing concern among tourists at Paris' most famous park -- the Tuileries garden next to the Louvre Museum. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins