Featured Research

from universities, journals, and other organizations

Jefferson And Michigan Scientists Identify Gene Defect Behind Muscle-wasting Disease

Date:
October 13, 2003
Source:
Thomas Jefferson University
Summary:
Scientists at Jefferson Medical College and the University of Michigan have uncovered a gene defect responsible for a muscle-wasting, neurodegenerative disease in mice known as mnd2. Their results may provide insights into the molecular origins of other such diseases in humans, including Parkinson's disease.

Scientists at Jefferson Medical College and the University of Michigan have uncovered a gene defect responsible for a muscle-wasting, neurodegenerative disease in mice known as mnd2. Their results may provide insights into the molecular origins of other such diseases in humans, including Parkinson's disease.

Related Articles


In an online report on October 8 in the journal Nature, the researchers, led by Emad Alnemri, Ph.D., at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and Miriam Meisler, Ph.D., at the University of Michigan in Ann Arbor, show that a mutation in a single amino acid in the protein Omi/HtrA2 is enough to cause the neuromuscular disease. In mnd2 mice, the amino acid serine is changed to cysteine.

Michigan senior research associate Julie Jones, a member of Dr. Meisler's research team, discovered the mnd2 mouse model, an inherited neurological disease, in 1990. mnd2 is characterized by an abnormal gait, muscle wasting and early death. To identify the guilty gene, Dr. Meisler's laboratory used a technique called positional cloning, eventually narrowing the mutation to a small region containing six candidate genes on chromosome 6. To find the specific genetic defect, they determined the nucleotide sequence of these candidate genes and discovered that the mnd2 defect was caused by a "point" mutation in the Omi gene.

Dr. Alnemri had been studying the Omi/HtrA2 protease – an enzyme that cleaves proteins – and its role in programmed cell death. When he located the Omi gene on chromosome 2p13.1 – which happened to correspond to mouse chromosome 6, where the mnd2 locus is found – he suspected that a mutation in the Omi/HtrA2 gene could be behind the mnd2 disease. According to Dr. Alnemri, who is professor of microbiology and immunology at Jefferson Medical College and a member of Jefferson's Kimmel Cancer Center, Omi/HtrA2 is present in the mitochondria, which generates energy in the cell. Omi regulates apoptosis, or programmed cell death, by binding and cleaving proteins that block the process. He and his co-workers at Jefferson characterized the mutation and discovered that it causes a loss of proteolytic activity of the protein, though the mutant protease can still bind to apoptosis-blocking proteins.

The Jefferson team performed additional tests on both normal and mutant mice cells, revealing that the cells from mutant mice were more sensitive to cellular stresses. They also discovered that mitochondria are defective in these cells as well. "The normal protease helps maintain normal mitochondrial function and is important for maintaining survival of cells in the nervous system," says Dr. Alnemri.

The finding was surprising, says Dr. Meisler, a professor in the Department of Human Genetics at Michigan, because "Omi had not been thought to be involved in neurological disease. It appears to cause neuronal cell death by impairment of mitochondrial function."

"Interestingly, that same chromosome region in humans has been mapped in certain patients with Parkinson's disease," Dr. Alnemri notes. "We tested a few of these Parkinson's samples but we did not find mutations in Omi. We still don't know if this gene is mutated in other types of Parkinson's or different neurodegenerative disorders."

"Based on the severe neurodegeneration and muscle wasting in the mnd2 mouse, we will now begin to screen DNA samples from patients with related disorders in order to determine the medical impact of mutations in this gene," says Dr. Meisler. "The prospects for treatment will be improved by accurate diagnosis in affected patients. We will extend the mutation search to the human gene, in order to determine its role in neuromuscular diseases."

The Omi protein and related proteins are found in all organisms, including bacteria. In the latter, Omi-related proteins function as "molecular sensors" of cellular stresses, Dr. Alnemri says.

"Our next step is to find out whether Omi in humans functions as a sensor of mitochondrial stress and to understand at the molecular level how Omi regulates mitochondrial function," he says.


Story Source:

The above story is based on materials provided by Thomas Jefferson University. Note: Materials may be edited for content and length.


Cite This Page:

Thomas Jefferson University. "Jefferson And Michigan Scientists Identify Gene Defect Behind Muscle-wasting Disease." ScienceDaily. ScienceDaily, 13 October 2003. <www.sciencedaily.com/releases/2003/10/031012234412.htm>.
Thomas Jefferson University. (2003, October 13). Jefferson And Michigan Scientists Identify Gene Defect Behind Muscle-wasting Disease. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2003/10/031012234412.htm
Thomas Jefferson University. "Jefferson And Michigan Scientists Identify Gene Defect Behind Muscle-wasting Disease." ScienceDaily. www.sciencedaily.com/releases/2003/10/031012234412.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Suicide Rates Up For Young Women In U.S.

Suicide Rates Up For Young Women In U.S.

Newsy (Mar. 6, 2015) According to a report from the CDC, suicide rates among young women increased from 1994 to 2012 while rates among young men have decreased. Video provided by Newsy
Powered by NewsLook.com
Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Liberia Releases Last Ebola Patient, But Threat Remains

Liberia Releases Last Ebola Patient, But Threat Remains

Newsy (Mar. 5, 2015) Liberia&apos;s last Ebola patient has been released, and the country hasn&apos;t recorded a new case in a week. However, fears of another outbreak still exist. Video provided by Newsy
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins