Featured Research

from universities, journals, and other organizations

Prions Act As Stepping Stones In Evolution

Date:
August 20, 2004
Source:
Whitehead Institute For Biomedical Research
Summary:
When a protein misfolds, the results can be disastrous. An incorrect change in the molecule's shape can lead to diseases including Alzheimer's and Huntington's. But scientists have discovered that misfolded proteins can have a positive side in yeast, helping cells navigate the dicey current of natural selection by expressing a variety of hidden genetic traits.

When a protein misfolds, the results can be disastrous. An incorrect change in the molecule's shape can lead to diseases including Alzheimer's and Huntington's. But scientists have discovered that misfolded proteins can have a positive side in yeast, helping cells navigate the dicey current of natural selection by expressing a variety of hidden genetic traits.

What's more, at the center of this process is a prion, a protein that changes shape in a self-perpetuating way--much like the prion in mammals that is responsible for certain neurological conditions such as Mad Cow disease.

"This is the first time we've seen a prion affect a cell in a beneficial way that can determine the evolution of an organism," says Heather True, lead author of the paper, which will appear August 15 in the online edition of the journal Nature.

Previously, True and Whitehead Institute Director Susan Lindquist reported that a particular yeast protein called Sup35 somehow altered the metabolic properties--or phenotype--of the cell when it "misfolded" into a prion state. Sup35 helps guide the process by which cells manufacture protein molecules. However, when Sup35 misfolds into its prion state, it forms amyloid fibers similar to those found in Alzheimer's patients and causes the cell's protein-producing machinery to go drastically awry.

More often than not, this is deleterious to the cell. In about 20% of the cases tested, however, the Whitehead team discovered that these new phenotypes afford the yeast cell a survival advantage.

"But we still didn't know the molecular mechanisms behind this," says True, a former postdoctoral researcher in the Lindquist lab, and now an assistant professor at Washington University, St. Louis. "How exactly did the prion change the appearance of the cell?"

The answer revealed a twist in the traditional understanding of how traits are inherited.

In order for Sup35 to ensure that the cell properly reads the protein recipes contained in genes, it focuses on what are called "stop codons"--sections of DNA that indicate exactly where in the gene a particular protein recipe ends. Sup35 ensures that the cell only translates material prior to these designated codons.

But when it misfolds into a prion conformation, Sup35 gets sloppy, and the cell reads beyond the stop codons, translating genetic information that previously had been dormant. As a result, the cell's phenotype changes. And here's where evolution comes in.

On those rare occasions when, due to a particular environment, the altered properties of the cell provide it with a survival advantage, the cell passes that trait on to its progeny. But when the daughter cells are mated and genetic reassortment takes place, they can subsequently pass along this same trait without the prion--that is, the trait becomes fixed in the cell's lineage and no longer depends on the prion state. "We don't know yet exactly how the daughter cells do this," says Lindquist, who also is a professor of biology at MIT, "but they do it quickly, often after a single mating."

The prion thus appears to function as an evolutionary stepping stone, affording the population of cells a chance to survive in a new environment where they need a different phenotype until they can acquire the genetic changes that produce the same effect.

These new traits are genetically complex. When Sup35 misfolds into a prion form, it affects a number of genes in one fell swoop.

"This prion," explains Lindquist, "has a capacity to hide and release genetic information throughout the entire genome that can contribute to new traits in a complex way."


Story Source:

The above story is based on materials provided by Whitehead Institute For Biomedical Research. Note: Materials may be edited for content and length.


Cite This Page:

Whitehead Institute For Biomedical Research. "Prions Act As Stepping Stones In Evolution." ScienceDaily. ScienceDaily, 20 August 2004. <www.sciencedaily.com/releases/2004/08/040816085200.htm>.
Whitehead Institute For Biomedical Research. (2004, August 20). Prions Act As Stepping Stones In Evolution. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2004/08/040816085200.htm
Whitehead Institute For Biomedical Research. "Prions Act As Stepping Stones In Evolution." ScienceDaily. www.sciencedaily.com/releases/2004/08/040816085200.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins