Featured Research

from universities, journals, and other organizations

New Research Reveals The Dynamic Inner Workings Of Earth

Date:
October 11, 2004
Source:
Arizona State University
Summary:
At the surface of Earth, life on a geologic scale is calm and peaceful save the occasional earthquake caused by the rub and slip of Earth's tectonic plates. But below Earth's surface, scientists are beginning to find a far more dynamic and tumultuous region than previously thought.

Research at Arizona State University hints to a very active inner Earth area as depicted by these drawings. Image on the left is of Earth. The center image shows a section of Earth and its main divisions (solid inner core, liquid outer core and the lower mantle) including the D" zone. The image on the right is a zoom in of the D" region, which was studied by Edward Garnero and his colleagues. The researchers found strong topographical variations of the D" layer. It was detected as geographical variations in the inferred seismic anisotropy, the alignment of fabric or crystals in rocks.
Credit: Image courtesy of Arizona State University

TEMPE, Ariz. – At the surface of Earth, life on a geologic scale is calm and peaceful save the occasional earthquake caused by the rub and slip of Earth's tectonic plates. But below Earth's surface, scientists are beginning to find a far more dynamic and tumultuous region than previously thought.

Deep inside Earth, where the mantle meets the molten iron core, researchers are finding telltale signs of what could be a highly active area filled with exotic forms and substances.

"This layer is far more complex than what we thought 10 years ago," said Arizona State University seismologist Edward Garnero. "It is a super dynamic situation, probably the most exotic part of Earth's interior. This area, where the mantle meets the core halfway to Earth's center (2,900 km below Earth's surface), the change in density is several times greater than what we find at Earth's surface, as represented by air and rock."

Garnero and a team of seismologists (Valerie Maupin, of the University of Oslo, Norway; Thorne Lay of the University of California, Santa Cruz; and Matthew Fouch of ASU) recently completed a study of Earth's interior. They report their findings in the Oct. 8 issue of Science magazine.

In "Variable Azimuthal Anisotropy in Earth's Lowermost Mantle," the ASU researchers decipher unusual layering in Earth's deep interior that may contain clues about how the interior churns and convects, and the relationship between Earth's interior and its ever evolving surface.

The deep mantle region the team probed is a several-hundred-kilometer-thick zone called D" (D double prime), which is where the silicate rock lower mantle meets Earth's liquid iron outer core. The researchers used seismic waves, those generated by earthquakes, to probe this region.

They measured unique directional vibrations of seismic waves recorded in North America from South American earthquakes, permitting a detailed probing of D" beneath Central America and the Caribbean Ocean. Garnero and his colleagues found unexpected wave vibration directions from these waves and showed the deepest mantle to be the source of these wave motion alignment changes.

Tilting of the once horizontal rock fabric in the lower mantle by 20 degrees explains the observation, where the fabric contortions must vary over relatively short distances (hundreds of kilometers). The seismic readings indicate a complex area that churns and chugs as the liquid iron core roils at the bottom of the rock-like mantle, Garnero said.

"We were detecting changes in the directional dependency over a relatively small size scale of a few hundred kilometers," Garnero said. "We think there must be currents and turbulence over geologic type time scales that are really quite vigorous and which are occurring at short lengths in order to stir things in such a way as to give this preferred alignment of the material.

Garnero explained that what the seismic waves may be detecting are areas where there are dramatic differences in the types of materials inside Earth.

"At the core mantle boundary layer there's a huge contrast in density," Garnero said. "You go from silicate-based rock (the mantle) to a liquid iron material really rapidly. The environment has all of the markings of something that may be more complex than what we see at the surface."

"What hasn't been appreciated is that in the deepest mantle there are incredible changes from place to place geographically over short distances," he added. "These changes represent a very dynamic mantle system."

"The center of the planet is thought to be as hot as the surface of the Sun, so this is a planet that is going to take some time to cool off," Garnero explained. "It cools off through this stirring and internal mixing."

Garnero said this research is helping reshape the contemporary view of the inner workings of Earth.

"In the past 10 to 15 years we have come to appreciate the importance of deciphering the lowest couple of hundred kilometers of the mantle. Doing so is critical in understanding how the interior of Earth actually turns and convects, and drives these motions that we see at the surface," Garnero said. "This research supports a new view of the deepest mantle, where the evolution and dynamics of Earth as a whole cannot be understood without first deciphering the D" layer."

The research is funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Cite This Page:

Arizona State University. "New Research Reveals The Dynamic Inner Workings Of Earth." ScienceDaily. ScienceDaily, 11 October 2004. <www.sciencedaily.com/releases/2004/10/041008025954.htm>.
Arizona State University. (2004, October 11). New Research Reveals The Dynamic Inner Workings Of Earth. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2004/10/041008025954.htm
Arizona State University. "New Research Reveals The Dynamic Inner Workings Of Earth." ScienceDaily. www.sciencedaily.com/releases/2004/10/041008025954.htm (accessed August 29, 2014).

Share This




More Earth & Climate News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Scientists Have Figured Out Why Rocks Move In Death Valley

Scientists Have Figured Out Why Rocks Move In Death Valley

Newsy (Aug. 28, 2014) The mystery of the moving rocks in Death Valley, California, has finally been solved. Scientists are pointing to a combo of water, ice and wind. Video provided by Newsy
Powered by NewsLook.com
Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com
Calif. Quake Underscores Need for Early Warning

Calif. Quake Underscores Need for Early Warning

AP (Aug. 26, 2014) Researchers at UC Berkeley are testing a prototype of an earthquake early warning system that California is pursuing years after places like Mexico and Japan already have them up and running. (August 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins