Featured Research

from universities, journals, and other organizations

Emory Chemists Develop Bacteria That May Help Decaffeinate Coffee

Date:
October 12, 2004
Source:
Emory University
Summary:
Chemists at Emory University have made an important advance in harnessing the ability of bacteria to make new molecules, and their discovery could eventually lead to the creation of naturally decaffeinated coffee plants.

Chemists at Emory University have made an important advance in harnessing the ability of bacteria to make new molecules, and their discovery could eventually lead to the creation of naturally decaffeinated coffee plants. The research, by Emory chemist Justin Gallivan and graduate student Shawn Desai, is scheduled to appear in the Oct. 27 edition of the Journal of the American Chemical Society.

Related Articles


Bacteria are terrific chemists, but they normally synthesize only molecules they need for their own survival, says Gallivan. His research team is interested in making bacteria synthesize molecules that they would otherwise not make on their own, resulting in molecules that may someday benefit humans. The Emory team reasoned that if a bacterium needs a particular molecule to survive, it has a strong incentive to help make it, so the goal was to make bacteria depend on a molecule that they wouldn't normally need.

In their first major breakthrough, the Emory researchers have coupled the life of a bacterium to the presence of theophylline, a compound that is used to treat asthma, and is produced by the breakdown of caffeine in both coffee and tea plants. One of the reasons that coffee has a high level of caffeine is that in the plant, caffeine is synthesized very quickly, but breaks down to theophylline very slowly.

"We know that there is an enzyme that breaks caffeine down into theophylline, but we don't know much about it," says Gallivan, an assistant professor of chemistry. "What we do know is that it works very slowly. Ideally, we would like to speed it up a bit so that we could create coffee plants that are low in caffeine. That's where the bacteria come in. They now need the breakdown product of the enzyme (theophylline) for survival, but they can't do much with caffeine."

Gallivan says that the idea is to supply these bacteria with caffeine, and give each bacterium a piece of DNA from coffee plants that may encode the enzyme that will allow the bacterium to convert the caffeine to the theophylline it needs to survive.

"At the end of the day, we will know that all of the surviving bacteria have 'learned' to convert caffeine to theophylline, and thus have the enzyme that we're interested in. We can then learn about the enzyme and how it works," Gallivan says. "We hope to use a process known as 'directed evolution' to help speed up the enzyme to break down caffeine faster. Since the bacteria need theophylline for their survival, they're partners in the whole process." Eventually, the faster enzyme could be introduced into coffee plants to produce decaffeinated coffee, he says.

To develop bacteria that are addicted to theophylline, Gallivan and Desai used a piece of the genetic material RNA, known as an aptamer, which was known to bind to theophylline tightly. The remaining challenge was to couple this binding to a vital function of the bacteria -- the production of a protein. To do this, the Emory team created a new sequence of RNA known as a "riboswitch."

In bacteria, riboswitches normally recognize essential molecules, such as vitamin B12, and switch the production of proteins on or off. The Emory team created a synthetic riboswitch that recognizes theophylline, and turns on the production of a protein known as "cat" which allows the cells to survive in the presence of an antibiotic known as chloramphenicol. Most bacteria die when exposed to chloramphenicol. However, bacteria containing the synthetic riboswitch survive when exposed to chloramphenicol as long as theophylline is present because theophylline turns on the production of the "cat" protein.

Gallivan says not to expect good-tasting, naturally decaffeinated coffee anytime soon. "We're still at the earliest stages of this work. There are many hurdles to overcome," he says. "As a scientist, I'm excited about the future. As a caffeinated coffee addict, part of me is not in a hurry to solve this one."

###

Research in the Gallivan lab is supported by Emory, and by grants from the Research Corporation, the Seaver Institute and the National Science Foundation. Desai and Gallivan are members of the Center for Fundamental and Applied Molecular Evolution (FAME Center, http://www.famecenter.emory.edu), which supports molecular evolution research at Emory and Georgia Tech.

Emory University is known for its demanding academics, outstanding undergraduate college of arts and sciences, highly ranked professional schools and state-of-the-art research facilities. For more than a decade Emory has been named one of the country's top 25 national universities by U.S. News & World Report. In addition to its nine schools, the university encompasses The Carter Center, Yerkes National Primate Research Center and Emory Healthcare, a comprehensive metropolitan health care system.


Story Source:

The above story is based on materials provided by Emory University. Note: Materials may be edited for content and length.


Cite This Page:

Emory University. "Emory Chemists Develop Bacteria That May Help Decaffeinate Coffee." ScienceDaily. ScienceDaily, 12 October 2004. <www.sciencedaily.com/releases/2004/10/041012090824.htm>.
Emory University. (2004, October 12). Emory Chemists Develop Bacteria That May Help Decaffeinate Coffee. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2004/10/041012090824.htm
Emory University. "Emory Chemists Develop Bacteria That May Help Decaffeinate Coffee." ScienceDaily. www.sciencedaily.com/releases/2004/10/041012090824.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins