Featured Research

from universities, journals, and other organizations

Scientists Achieve Self-assembly Of Spider Silk Fiber In Insect Cells

Date:
November 26, 2004
Source:
Hebrew University Of Jerusalem
Summary:
For the first time anywhere, scientists from the Hebrew University of Jerusalem and from Germany have succeeded in producing self-assembled spider web fibers under laboratory conditions, outside of the bodies of spiders. This fiber is significantly stronger than the silk fiber made by silkworms.

Fibers produced in insect cells are seen at right; spider and its web at left.
Credit: Image courtesy of Hebrew University Of Jerusalem

For the first time anywhere, scientists from the Hebrew University of Jerusalem and from Germany have succeeded in producing self-assembled spider web fibers under laboratory conditions, outside of the bodies of spiders. This fiber is significantly stronger than the silk fiber made by silkworms.

The achievement by the research team, described in an article in the Nov. 23 issue of Current Biology, opens the way to commercial development of this spider fiber for numerous industrial applications.

Silk has been in use by mankind for thousands of years. However, unlike silkworms, spiders are territorial in nature and thus not subject to domestication and commercial growth in quantities.

Scientists have attempted to create spider's webs independently of the spider itself through genetic engineering by manufacturing the proteins, which constitute the silk fibers of the webs, through the use of bacteria, yeast, plants and mammalian cells in tissue culture. But these efforts were unsuccessful in producing fibers with properties similar to the natural ones.

Now, the Israeli-German scientific team has succeeded, through techniques of genetic engineering, in creating spontaneous production of spider web fiber in insect cell cultures. These fibers were equal in their chemical resistance characteristics to those produced by the spider. Mass production of such fiber in the future can be used industrially in various areas which require fine applications. The Yissum Research Development Company of the Hebrew University and German partners are focusing on commercializing the research.

Participants in the research, which has been conducted over the past two years, are the developmental biologist Dr. Uri Gat, doctoral student Shmulik Ittah and research assistant Shulamit Cohen of the Department of Cell and Animal Biology in the Silberman Institute of Life Sciences at the Hebrew University; Dr. Thomas Scheibel and doctoral student Daniel Huemmerich, biophysicists at the Technical University of Munich; and Fritz Vollrath of Oxford University.

Spider webs consist of fibers (spider silks) produced by specific proteins. In order to artificially synthesize these proteins, the researchers utilized sections of the genes of the garden spider (Araneus diadematus), which are involved in the manufacture of these proteins.

The spider spins its web from various types of fibers, including the fiber known as dragline silk, which is characterized by great strength and elasticity. It is six times stronger than nylon and steel fiber of equal diameter and serves the spider as a "lifeline" in case of falling. This fiber is made up primarily from two proteins, ADF-3 and ADF-4, which are genetically similar and are produced in a gland in the abdomen of the spider. The process by which these proteins pass from the moment of their production until their excretion as fiber was not understood until now.

In their laboratory experiments, the researchers introduced the genes, which encode the two dragline silk proteins, into an insect-infecting virus, known as baculovirus. These genetically engineered viruses were then grown in cultures of cells derived from a type of caterpillar called the fall armyworm.

"Since spiders and insects are both arthropods and since their genomes are more closely related to each other than to those creatures with which prior experiments were conducted, we felt that we would be able to produce spider fibers using these insects," said Dr. Gat. "For this purpose, we developed a methodology for producing great quantities of the appropriate proteins, which is based on infecting the insect cells with the genetically engineered virus, in order to produce the fiber."

After the engineered viruses infected the insect cells, the cells began producing the proteins, and subsequently "spider" fibers spontaneously formed in them. However, – unlike in spiders – these laboratory-produced fibers were made up only of the ADF-4 protein, while the ADF-3 protein remained dissolved. Nevertheless, these fibers were identical in their diameter to that of real spider fiber and were found to be equal to -- and in certain aspects even exceed -- the chemical resistance quality of the spider-created fiber.

The scientists believe that that the variability in the behavior of the proteins they produced as compared to what occurs in nature shows a high level of sophistication in the spider fibers. It seems that the protein ADF-4 makes it possible for the rapid production of fiber, while the other protein, ADF-3, regulates production and prevents early fiber production, which could be fatal to the spider.

The researchers are now hoping to be able to create conditions, which will make it possible to produce the spider fibers in quantity without the limitations of having to do this within insect cells.

"The research enabled us to determine the close connection that exists between the sequence, structure and functions of the proteins," said Dr. Gat. "From a practical viewpoint, mass production of fibers, whose diameter is one-thousandth of a millimeter, is likely to be useful in the future for manufacture of bulletproof vests, surgical thread, micro-conductors, optical fibers and fishing rods; even new types of clothing may be envisioned."


Story Source:

The above story is based on materials provided by Hebrew University Of Jerusalem. Note: Materials may be edited for content and length.


Cite This Page:

Hebrew University Of Jerusalem. "Scientists Achieve Self-assembly Of Spider Silk Fiber In Insect Cells." ScienceDaily. ScienceDaily, 26 November 2004. <www.sciencedaily.com/releases/2004/11/041123115708.htm>.
Hebrew University Of Jerusalem. (2004, November 26). Scientists Achieve Self-assembly Of Spider Silk Fiber In Insect Cells. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2004/11/041123115708.htm
Hebrew University Of Jerusalem. "Scientists Achieve Self-assembly Of Spider Silk Fiber In Insect Cells." ScienceDaily. www.sciencedaily.com/releases/2004/11/041123115708.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins