Featured Research

from universities, journals, and other organizations

Prediction Of Gene Function In Mammals

Date:
December 15, 2004
Source:
BioMed Central
Summary:
Gene function in mammals can be quickly and reliably predicted using a high-throughput analysis of patterns of RNA expression, according to an article published in Journal of Biology. This challenges the conventional view that tissue-specificity is the best predictor of function, and could speed up the quest to understand whole genomes, in humans and other mammals, by decades.

December 6, 2004 -- Gene function in mammals can be quickly and reliably predicted using a high-throughput analysis of patterns of RNA expression, according to an article published today in Journal of Biology. This challenges the conventional view that tissue-specificity is the best predictor of function, and could speed up the quest to understand whole genomes, in humans and other mammals, by decades. The authors have made their mouse dataset openly accessible online to the research community.

Tim Hughes and colleagues from the University of Toronto, Canada, looked at the mouse genome using a technique previously only applied to simple organisms such as yeast and the nematode worm C. elegans. In yeast and other simple organisms, the expression of genes with similar functions tends to be coordinately regulated. In these organisms, identifying correlated expression of known and unknown genes can help predicting the function of a novel gene. It has been assumed that this strategy couldn't be applied to mammals, but instead that genes expressed in the same tissue are most likely to have a functional relationship, making tissue-specificity the best indicator of function.

In an experiment that challenges this view, Hughes and colleagues created and analysed a microarray panel of over 40,000 known mouse mRNAs, expressed in 55 tissues. Their results showed that genes from the same Gene Ontology 'Biological Process' (GO-BP) category – which indicates the physiological function of their encoded protein, such as 'response to temperature' or 'amino acid metabolism' - are transcriptionally co-regulated, independent of the tissue in which they are expressed.

To show that this approach could be used to predict novel gene function, the team then carried out a co-expression analysis on genes of unknown function. They analysed the microarray results using a machine learning computational algorithm called a support vector machine (SVM). SVMs had never been used on this scale before: the programme analysed over 12,000 genes and predicted a function, out of 587 GO-BP categories, for each of them. A number of predictions resulting from the SVM analysis were confirmed by results that are already in the literature, and in the case of one gene of unknown function, P1W1, by directed experimentation. A highly conserved yeast homologue of P1W1 protein was shown to act biochemically as would be expected for a protein with a role in RNA processing, as predicted by the algorithm.

"We examined the extent to which [transcriptional co-expression] is effective for our data, and we show that it yields almost universally superior predictions of gene function in comparison to using information regarding simple tissue specificity or tissue restriction" say the authors.

This new, quick, high-throughput method for predicting mammalian gene function merely from the pattern of RNA expression could make tissue specificity based predictions a thing of the past and revolutionize the field of functional genomics. The results of the study also hint at a more complex transcriptional control in mammals, whereby transcription factors may be regulating the transcription of functionally related genes across different tissues.


Story Source:

The above story is based on materials provided by BioMed Central. Note: Materials may be edited for content and length.


Cite This Page:

BioMed Central. "Prediction Of Gene Function In Mammals." ScienceDaily. ScienceDaily, 15 December 2004. <www.sciencedaily.com/releases/2004/12/041206213028.htm>.
BioMed Central. (2004, December 15). Prediction Of Gene Function In Mammals. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2004/12/041206213028.htm
BioMed Central. "Prediction Of Gene Function In Mammals." ScienceDaily. www.sciencedaily.com/releases/2004/12/041206213028.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins