Featured Research

from universities, journals, and other organizations

Prediction Of Gene Function In Mammals

Date:
December 15, 2004
Source:
BioMed Central
Summary:
Gene function in mammals can be quickly and reliably predicted using a high-throughput analysis of patterns of RNA expression, according to an article published in Journal of Biology. This challenges the conventional view that tissue-specificity is the best predictor of function, and could speed up the quest to understand whole genomes, in humans and other mammals, by decades.

December 6, 2004 -- Gene function in mammals can be quickly and reliably predicted using a high-throughput analysis of patterns of RNA expression, according to an article published today in Journal of Biology. This challenges the conventional view that tissue-specificity is the best predictor of function, and could speed up the quest to understand whole genomes, in humans and other mammals, by decades. The authors have made their mouse dataset openly accessible online to the research community.

Tim Hughes and colleagues from the University of Toronto, Canada, looked at the mouse genome using a technique previously only applied to simple organisms such as yeast and the nematode worm C. elegans. In yeast and other simple organisms, the expression of genes with similar functions tends to be coordinately regulated. In these organisms, identifying correlated expression of known and unknown genes can help predicting the function of a novel gene. It has been assumed that this strategy couldn't be applied to mammals, but instead that genes expressed in the same tissue are most likely to have a functional relationship, making tissue-specificity the best indicator of function.

In an experiment that challenges this view, Hughes and colleagues created and analysed a microarray panel of over 40,000 known mouse mRNAs, expressed in 55 tissues. Their results showed that genes from the same Gene Ontology 'Biological Process' (GO-BP) category – which indicates the physiological function of their encoded protein, such as 'response to temperature' or 'amino acid metabolism' - are transcriptionally co-regulated, independent of the tissue in which they are expressed.

To show that this approach could be used to predict novel gene function, the team then carried out a co-expression analysis on genes of unknown function. They analysed the microarray results using a machine learning computational algorithm called a support vector machine (SVM). SVMs had never been used on this scale before: the programme analysed over 12,000 genes and predicted a function, out of 587 GO-BP categories, for each of them. A number of predictions resulting from the SVM analysis were confirmed by results that are already in the literature, and in the case of one gene of unknown function, P1W1, by directed experimentation. A highly conserved yeast homologue of P1W1 protein was shown to act biochemically as would be expected for a protein with a role in RNA processing, as predicted by the algorithm.

"We examined the extent to which [transcriptional co-expression] is effective for our data, and we show that it yields almost universally superior predictions of gene function in comparison to using information regarding simple tissue specificity or tissue restriction" say the authors.

This new, quick, high-throughput method for predicting mammalian gene function merely from the pattern of RNA expression could make tissue specificity based predictions a thing of the past and revolutionize the field of functional genomics. The results of the study also hint at a more complex transcriptional control in mammals, whereby transcription factors may be regulating the transcription of functionally related genes across different tissues.


Story Source:

The above story is based on materials provided by BioMed Central. Note: Materials may be edited for content and length.


Cite This Page:

BioMed Central. "Prediction Of Gene Function In Mammals." ScienceDaily. ScienceDaily, 15 December 2004. <www.sciencedaily.com/releases/2004/12/041206213028.htm>.
BioMed Central. (2004, December 15). Prediction Of Gene Function In Mammals. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2004/12/041206213028.htm
BioMed Central. "Prediction Of Gene Function In Mammals." ScienceDaily. www.sciencedaily.com/releases/2004/12/041206213028.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) — A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) — Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins