Featured Research

from universities, journals, and other organizations

NYU Researchers Simulate Molecular Biological Clock

Date:
February 3, 2005
Source:
New York University
Summary:
Researchers at New York University have developed a model of the intra-cellular mammalian biological clock that reveals how rapid interaction of molecules with DNA is necessary for producing reliable 24-hour rhythms. They also found that without the inherent randomness of molecular interactions within a cell, biological rhythms may dampen over time.

Researchers at New York University have developed a model of the intra-cellular mammalian biological clock that reveals how rapid interaction of molecules with DNA is necessary for producing reliable 24-hour rhythms. They also found that without the inherent randomness of molecular interactions within a cell, biological rhythms may dampen over time. These findings appeared in the most recent issue of the Proceedings of the National Academy of Sciences (PNAS).

Related Articles


Daniel Forger, an NYU biologist and mathematician, and Charles Peskin, a professor at NYU’s Courant Institute of Mathematical Sciences and Center for Neural Science, developed a mathematical model of the biological clock that replicates the hundreds of clock-related molecular reactions that occur within each mammalian cell.

Biological circadian clocks time daily events with remarkable accuracy—often within a minute each day. However, understanding how circadian clocks function has proven challenging to researchers. This is partly because the 24-hour rhythm is an emergent property of a complex network of many molecular interactions within a cell. Another complication is that molecular interactions are inherently random, which raises the question how a clock with such imprecise components can keep time so precisely. One way to combat molecular noise is to have large numbers of molecular interactions, but this is limited by the small numbers of molecules of some molecular species within the cell (for instance, there are only two copies of DNA).

To simulate the random nature of the biochemical interactions of the mammalian intra-cellular circadian clock, Forger and Peskin used the existing Gillespie method. The method tracks the changes in the integer numbers of each type of molecule of the system as these biochemical reactions occur. Modeling each type of molecule separately helped avoid mathematical assumptions in their model that may not be valid in real-life cells. Their model was validated with a large library of data on the concentrations of the molecular species within the mouse molecular clock at different times of the day and data on the behavior of mice with circadian clock mutations.

The results of their computer simulations showed that reliable 24-hour timekeeping can only be achieved if the regulatory molecules that influence gene expression bind and unbind to DNA quickly—typically, within a minute. In this way, the large number of bindings and unbindings helps to compensate for the small numbers of molecules involved. The researchers also found that having more molecules in the cell does not necessarily lead to more accurate timekeeping. Removing all the CRY1 molecules (CRY1 mutant) or removing all the CRY2 molecules (CRY2 mutant), while keeping all other molecular species unchanged, leads to more accurate timekeeping. While simulating the PER2 mutation, they found that circadian oscillations could only be sustained in the presence of molecular noise. This may help explain some of the conflicting experimental reports about the PER2 mutant.

“Without the rapidity of molecular interactions within these cells, the precision of the biological clock would be lost,” explained Forger. “It is remarkable that a process occurring on the time scale of minutes can have such a profound effect on one that occurs over 24 hours.”


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "NYU Researchers Simulate Molecular Biological Clock." ScienceDaily. ScienceDaily, 3 February 2005. <www.sciencedaily.com/releases/2005/02/050201104044.htm>.
New York University. (2005, February 3). NYU Researchers Simulate Molecular Biological Clock. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2005/02/050201104044.htm
New York University. "NYU Researchers Simulate Molecular Biological Clock." ScienceDaily. www.sciencedaily.com/releases/2005/02/050201104044.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins