Featured Research

from universities, journals, and other organizations

Structure Of A Conserved RNA Element In The SARS Virus Genome Determined

Date:
February 3, 2005
Source:
Public Library Of Science
Summary:
The genome of the SARS virus is a single strand of RNA that folds into regular repeating patterns to form secondary structures such as helices. These then fold and bend in three dimensions to form complex tertiary structures. William Scott and colleagues have used X-ray crystallography to measure the exact positions of individual ribonucleotides and the interactions between them in a small segment of the SARS virus genome called the s2m element.

Structure of a conserved RNA element within the SARS virus genome.
Credit: Image courtesy of Public Library Of Science

In February 2003, the first (and so far only) epidemic of severe acute respiratory syndrome (SARS) started in Guangdong Province, China. A respiratory illness that begins with a high temperature and can develop into life-threatening pneumonia, SARS is spread by close person-to-person contact. Before the end of the month, a Guangdong doctor had inadvertently taken the infection to Hong Kong. A woman staying in the same Hong Kong hotel as the doctor then carried the disease to Toronto. In March, the World Health Organization issued a global alert and warned against unnecessary travel to affected areas. Because of these and other containment efforts, 8,098 people became ill with SARS, rather than the predicted millions; 774 people died. The last case of the epidemic was reported in Taiwan in June 2003, and since then there have been only two cases in Singapore and nine in China.

Related Articles


By May 2003, a coronavirus had been identified as the cause of SARS, and the full genome sequence of this new human pathogen, which may have jumped from civet cats to people, had been published. From the viral genome, researchers have deduced the sequences and structures of the viral proteins, hoping to use this information to develop treatments and vaccines for SARS. But could the structure of the RNA genome itself also be a target for antiviral drugs?

The genome of the SARS virus is a single strand of RNA that folds into regular repeating patterns to form secondary structures such as helices. These then fold and bend in three dimensions to form complex tertiary structures. William Scott and colleagues have used X-ray crystallography to measure the exact positions of individual ribonucleotides and the interactions between them in a small segment of the SARS virus genome called the s2m element. This element sits at one end of the viral genome, and, as the researchers show, its sequence is highly conserved in related coronaviruses. Furthermore, unlike the rest of the SARS genome, which changes rapidly, the s2m element is absolutely conserved in SARS variants obtained from patients during the SARS epidemic. This strong sequence conservation indicates that the tertiary structure of s2m could be important for viral function, and when the researchers solved the three-dimensional crystal structure of the element, they found that it had a unique tertiary structure. In particular, there was a right-angle kink in its helical axis and a tunnel with a net negative charge.

The biological role of a new protein can often be deduced by comparing its shape with that of proteins with known functions. Scott and colleagues used this approach to hypothesize that the function of the s2m element involves interaction with a conserved host factor during the SARS life cycle. Finding a similar 90 kink in a region of ribosomal RNA that binds factors necessary for the initiation of protein synthesis, the researchers speculate that the SARS virus may use the s2m element to hijack its host cell's protein synthesis machinery. This and other putative roles need to be tested experimentally, but given that the s2m element is absent in the human genome, its unusual structural features could be an attractive target for the design of antiviral therapeutic agents.


Story Source:

The above story is based on materials provided by Public Library Of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library Of Science. "Structure Of A Conserved RNA Element In The SARS Virus Genome Determined." ScienceDaily. ScienceDaily, 3 February 2005. <www.sciencedaily.com/releases/2005/02/050201191458.htm>.
Public Library Of Science. (2005, February 3). Structure Of A Conserved RNA Element In The SARS Virus Genome Determined. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2005/02/050201191458.htm
Public Library Of Science. "Structure Of A Conserved RNA Element In The SARS Virus Genome Determined." ScienceDaily. www.sciencedaily.com/releases/2005/02/050201191458.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins