Featured Research

from universities, journals, and other organizations

Plant Sacrifices Cells To Fight Invaders

Date:
June 1, 2005
Source:
National Science Foundation
Summary:
Researchers recently discovered a gene essential to one of the plant kingdom's key immune responses--programmed cell death (PCD). Plants use PCD to create a protective zone of dead cells around the infection site to prevent the invading pathogen from spreading. But how the plants keep from killing themselves after they turn on the cell-suicide process was a mystery.

Plants use programmed cell death (PCD) to create a protective zone of dead cells (brown) around the site of pathogen invasion (purple). The dead plant cells do not support viral growth and lose their interconnectedness, thereby halting the pathogen's spread.
Credit: Nicolle Rager Fuller, National Science Foundation

Researchers recently discovered a gene essential to one of the plant kingdom's key immune responses--programmed cell death (PCD). Plants use PCD to create a protective zone of dead cells around the infection site to prevent the invading pathogen from spreading. But how the plants keep from killing themselves after they turn on the cell-suicide process was a mystery.

Related Articles


Now, in the May 20 issue of the journal Cell, Yale University's Savithramma Dinesh-Kumar and his colleagues report finding a gene that normally propagates a "pro-survival" signal in plant tissue. Without that input, an alternate "pro-death" signal moves out of the infected areas and damages the rest of the plant.

The group studied the plant-pathogen interactions in a type of tobacco easily infected with a virus in the laboratory. The model system allowed the researchers to inactivate, or silence, a gene important to the plant's PCD response. In particular, when the gene was inactivated, the plant was unable to regulate the extent of PCD, leading to excessive cell death throughout the plant.

When a plant pathogen makes contact with its intended target, the plant cells immediately launch a set of sophisticated molecular responses. Such defense mechanisms, including PCD, are similar to immune responses exhibited by animal cells when they are fighting a disease-causing agent.

In fact, PCD is a well-researched, yet still puzzling phenomenon that has been described in virtually all cell types, both plant and animal. PCD plays a critical role in many biological processes including immune system function, embryonic development and elimination of defective cells. When PCD malfunctions, or is undermined by pathogens, the effects can be devastating, resulting in diseases such as cancer, Alzheimer's and AIDS.

Dinesh-Kumar, whose work is supported by the National Science Foundation's (NSF) Plant Genome Research program, had to first develop the gene-silencing technique to adequately inactivate the plant genes. The new technique was a success for the field of plant research and is currently being used by several research groups. NSF's Jane Silverthorne said, "This is a great example of how NSF-supported tools are enabling important basic research in plants with a broader relevance to other organisms."


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Plant Sacrifices Cells To Fight Invaders." ScienceDaily. ScienceDaily, 1 June 2005. <www.sciencedaily.com/releases/2005/05/050527104859.htm>.
National Science Foundation. (2005, June 1). Plant Sacrifices Cells To Fight Invaders. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2005/05/050527104859.htm
National Science Foundation. "Plant Sacrifices Cells To Fight Invaders." ScienceDaily. www.sciencedaily.com/releases/2005/05/050527104859.htm (accessed October 24, 2014).

Share This



More Plants & Animals News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins