Featured Research

from universities, journals, and other organizations

Molecular Mechanism Of Feather Formation Found

Date:
August 18, 2005
Source:
University of Wisconsin-Madison
Summary:
Feathers are the essence of birds. Without them, birds could not fly or attract mates. But how exactly do feathers form molecularly? Experimentally testing one current hypothesis, developmental biologists at University of Wisconsin Medical School believe they now have the answer.

MADISON - Feathers are the essence of birds. Without them, birds couldnot fly or attract mates. But how exactly do feathers form molecularly?Experimentally testing one current hypothesis, developmental biologistsat University of Wisconsin Medical School believe they now have theanswer.

Related Articles


In a previous study, UW anatomy professor John F. Fallon and his teamshowed that Sonic hedgehog (Shh) and bone morphogenetic protein 2(Bmp2) must be expressed in order to produce barb ridges, which areamong the first structures to form in the tufted branches of the simpledowny chick feather. The two proteins, which tend to play off eachother in organ development, also are involved in the embryonicdevelopment of limbs, lungs, teeth and the gut.

In the current study, appearing in the Aug. 16 Proceedings of theNational Academy of Sciences (PNAS Online, Aug. 8), Fallon's team andcollaborators showed that during the development of barbs-filamentousstructures that form the feather-the function of these two proteinsinteract. SHH up-regulates its own expression and that of Bmp2, andBmp2 then signals the down-regulation of Shh expression. This dynamicsignaling interaction fits a longstanding mathematical model known asan activator-inhibitor mechanism, says lead author Matthew P. Harris,Fallon's graduate student now doing a postdoctoral fellowship withNobel Laureate Christiane Nusslein-Volhard at Max Plank Institute inTubingen, Germany.

"In this model, the inhibitor down-regulates activator function, theactivator up-regulates its own expression and the activator alsoincreases the activity of the inhibitor," Harris says. "The model is asimple way of explaining how feather patterning is achieved."

Theoretical biologist Hans Meinhardt, also at the Max PlankInstitute and a collaborator on the PNAS paper, posited the role of theactivator-inhibitor model in developmental patterning in animals yearsago. Through the combined efforts of Meinhardt, Richard Prum of YaleUniversity and Scott Williamson of Cornell University, the model wasplaced in the context of simulations of growing feathers.

The results suggested that a simple interaction between Shh and Bmp2 issufficient to model the creation and patterning of barbs in featherdevelopment. The team then tested whether such interactions truly existin the developing feather. In the first steps of feather development,cells exposed to essentially the same levels of Bmp2 and Shh grow froma small bud to form a uniform ring. Shh then is expressed in specificspots along the ring, giving rise to bumps, seen microscopically aslongitudinal stripes demarcating the edges of ridges in the developingbarb.

"Each barb ridge grows in length by recruiting new cells, whichproliferate at the growing base of the feather germ, to join the baseof that barb ridge," Harris says. "The variations in the initial numberof barb ridges will directly affect the shape, and consequent function,of the feather."

To test the activator-inhibitor model, Harris injected retroviruses toforce the expression of either Shh or Bmp2 into the skin of six-day-oldchick embryos. The virus infected only small patches of cells andallowed Harris to locally examine the effects of the treatment on barbpatterning during feather development.

To assess the specific role of Bmp2 in regulating Shh expression,Harris tricked the cells into believing that Bmp2 was signaling themcontinuously by altering receptors in the cells. The over-expression ofBmp2 signaling via the altered receptors led to ongoing down-regulationof normal Shh expression needed to form the barbs.

Harris and colleagues used a similar experiment to test whether Shhcould up-regulate its own expression during barb formation, and foundthat it could. Similarly, they found that regional expression of Shhled to detectable up-regulation of Bmp2 in feather buds as they firstgrew.

The underlying assumptions of the model were found to be true indeveloping feathers. These findings suggest that simple relationshipsbetween developmental genes can provide the basis for the formation ofcomplex forms.

The researchers predict that a more complicated version of the modelcan be applied to the formation of more complex feathers. Termedpennaceous, these feathers occur in the duck and other birds, includingadult chickens, and are not characterized as downy. The more primitiveyoung chicken feathers, which are downy, are called plumalaceous.

"We don't have empirical evidence for this yet, but mathematicalanalyses lead us to believe that the addition of a third signalingfactor leads to the development of the more complex pennaceousfeather," Fallon says. " Our model supports paleontologic evidence thatpennaceous feathers are more advanced than plumalaceous feathers."



Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Madison. "Molecular Mechanism Of Feather Formation Found." ScienceDaily. ScienceDaily, 18 August 2005. <www.sciencedaily.com/releases/2005/08/050811090343.htm>.
University of Wisconsin-Madison. (2005, August 18). Molecular Mechanism Of Feather Formation Found. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2005/08/050811090343.htm
University of Wisconsin-Madison. "Molecular Mechanism Of Feather Formation Found." ScienceDaily. www.sciencedaily.com/releases/2005/08/050811090343.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins