Featured Research

from universities, journals, and other organizations

Alice Falls Into A Black Hole: Acceleration And Quantum Entanglement

Date:
August 16, 2005
Source:
Perimeter Institute for Theoretical Physics
Summary:
An upcoming publication in Physical Review Letters examines the effect of acceleration on quantum entanglement.

Consider that Alice and Bob are two observers at rest separated by along distance. Each of them has a measuring device that detects,respectively, two different quantum systems. The state of the jointsystem is said to be maximally entangled if, for many copies of thestate, any measurement that Alice makes is completely determined byBob's and vice versa.

What would happen to their entanglement if Alice fell into a black holeand Bob stayed safely outside? We can model this situation byconsidering Alice to be stationary and Rob (formerly Bob) to beuniformly accelerated with respect to Alice. We found that although theentanglement between them is reduced due to Rob's acceleration, itremains nonzero as long as Rob's acceleration is not infinite.

It has long been known that an accelerated observer detects athermal bath of particles whereas an observer at rest sees only avacuum. Known as the Unruh effect, it is this that causes thedegradation in the entanglement measured by Alice and Rob. Our resultsare a first step in understanding how relativistic effects modifyquantum information, and they imply that different observers detectdifferent degrees of entanglement.

This has important consequences in quantum teleportation betweenrelatively accelerated parties, since entanglement is the main resource in this task.

###

This upcoming publication by I. Fuentes-Schuller and R. B. Mann will appear in Physical Review Letters.

The abstract: Two observers determine the entanglement between two freebosonic modes by each detecting one of the modes and observing thecorrelations between their measurements. We show that a state which ismaximally entangled in an inertial frame becomes less entangled if theobservers are relatively accelerated. This phenomenon, which is aconsequence of the Unruh effect, shows that entanglement is anobserver-dependent quantity in non-inertial frames. In the highacceleration limit, our results can be applied to a non-acceleratedobserver falling into a black hole while the accelerated one barelyescapes. If the observer escapes with infinite acceleration, thestate's distillable entanglement vanishes.


Story Source:

The above story is based on materials provided by Perimeter Institute for Theoretical Physics. Note: Materials may be edited for content and length.


Cite This Page:

Perimeter Institute for Theoretical Physics. "Alice Falls Into A Black Hole: Acceleration And Quantum Entanglement." ScienceDaily. ScienceDaily, 16 August 2005. <www.sciencedaily.com/releases/2005/08/050814164431.htm>.
Perimeter Institute for Theoretical Physics. (2005, August 16). Alice Falls Into A Black Hole: Acceleration And Quantum Entanglement. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2005/08/050814164431.htm
Perimeter Institute for Theoretical Physics. "Alice Falls Into A Black Hole: Acceleration And Quantum Entanglement." ScienceDaily. www.sciencedaily.com/releases/2005/08/050814164431.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com
New Corvette Can Secretly Record Convos And Get You Arrested

New Corvette Can Secretly Record Convos And Get You Arrested

Newsy (Sep. 28, 2014) The 2015 Corvette features valet mode – which allows the owner to secretly record audio and video – but in many states that practice is illegal. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins