Featured Research

from universities, journals, and other organizations

Alice Falls Into A Black Hole: Acceleration And Quantum Entanglement

Date:
August 16, 2005
Source:
Perimeter Institute for Theoretical Physics
Summary:
An upcoming publication in Physical Review Letters examines the effect of acceleration on quantum entanglement.

Consider that Alice and Bob are two observers at rest separated by along distance. Each of them has a measuring device that detects,respectively, two different quantum systems. The state of the jointsystem is said to be maximally entangled if, for many copies of thestate, any measurement that Alice makes is completely determined byBob's and vice versa.

What would happen to their entanglement if Alice fell into a black holeand Bob stayed safely outside? We can model this situation byconsidering Alice to be stationary and Rob (formerly Bob) to beuniformly accelerated with respect to Alice. We found that although theentanglement between them is reduced due to Rob's acceleration, itremains nonzero as long as Rob's acceleration is not infinite.

It has long been known that an accelerated observer detects athermal bath of particles whereas an observer at rest sees only avacuum. Known as the Unruh effect, it is this that causes thedegradation in the entanglement measured by Alice and Rob. Our resultsare a first step in understanding how relativistic effects modifyquantum information, and they imply that different observers detectdifferent degrees of entanglement.

This has important consequences in quantum teleportation betweenrelatively accelerated parties, since entanglement is the main resource in this task.

###

This upcoming publication by I. Fuentes-Schuller and R. B. Mann will appear in Physical Review Letters.

The abstract: Two observers determine the entanglement between two freebosonic modes by each detecting one of the modes and observing thecorrelations between their measurements. We show that a state which ismaximally entangled in an inertial frame becomes less entangled if theobservers are relatively accelerated. This phenomenon, which is aconsequence of the Unruh effect, shows that entanglement is anobserver-dependent quantity in non-inertial frames. In the highacceleration limit, our results can be applied to a non-acceleratedobserver falling into a black hole while the accelerated one barelyescapes. If the observer escapes with infinite acceleration, thestate's distillable entanglement vanishes.


Story Source:

The above story is based on materials provided by Perimeter Institute for Theoretical Physics. Note: Materials may be edited for content and length.


Cite This Page:

Perimeter Institute for Theoretical Physics. "Alice Falls Into A Black Hole: Acceleration And Quantum Entanglement." ScienceDaily. ScienceDaily, 16 August 2005. <www.sciencedaily.com/releases/2005/08/050814164431.htm>.
Perimeter Institute for Theoretical Physics. (2005, August 16). Alice Falls Into A Black Hole: Acceleration And Quantum Entanglement. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2005/08/050814164431.htm
Perimeter Institute for Theoretical Physics. "Alice Falls Into A Black Hole: Acceleration And Quantum Entanglement." ScienceDaily. www.sciencedaily.com/releases/2005/08/050814164431.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins