Featured Research

from universities, journals, and other organizations

Researchers Discover New Route To Hemoglobin Synthesis

Date:
August 22, 2005
Source:
Howard Hughes Medical Institute
Summary:
HHMI researchers studying zebrafish that die from anemia have discovered a new pathway for the synthesis of heme, the deep red, iron-containing molecule that is a component of hemoglobin and myoglobin. The research suggests that defects in this pathway may be an overlooked cause of anemia in humans.

Researchers studying zebrafish that die from anemia havediscovered a new pathway for the synthesis of heme, the deep red,iron-containing molecule that is a component of hemoglobin andmyoglobin. The research suggests that defects in this pathway may be anoverlooked cause of anemia in humans.

A research team led byLeonard I. Zon, a Howard Hughes Medical Institute investigator atChildren's Hospital Boston and Harvard Medical School, published itsfindings in the August 18, 2005, issue of the journal Nature. Zon andhis colleagues in Boston collaborated on the studies with researchersfrom the University of Rochester Medical Center and the University ofUtah School of Medicine.

The researchers began their studieshoping to learn why a zebrafish mutant known as shiraz (sir) failed toproduce hemoglobin. The sir mutant zebrafish, which were first isolatedby Zon and colleagues in the Tόbingen Screen Consortium in Germany,intrigued the researchers because they die from anemia caused by lackof hemoglobin.

Over the years, Zon and his colleagues havediscovered many zebrafish mutants that fail to make hemoglobin becauseof defects in iron metabolism. As they have teased out the causes ofthese defects, they have learned that the biochemical pathway involvedin hemoglobin synthesis in zebrafish has been largely conserved overthe 300 million years of evolution between fish and humans. Accordingto Zon, the easily manipulable fish constitutes an excellent modelorganism for studying the regulation of heme formation.

In thecurrent study, the researchers traced the hemoglobin defect to the genefor an enzyme known as glutaredoxin 5 (grx5). But the researchers foundearly on that the enzyme was not directly connected to hemoglobinproduction. “Nobody had worked on this gene in vertebrates before, butwe found in the scientific literature that this gene in yeast wasrequired for the production of iron-sulfur clusters in themitochondria,” said Zon. Iron-sulfur clusters are incorporated intocertain proteins to enable their enzymatic functions. In furtherexperiments, the researchers confirmed that versions of grx5 inzebrafish, yeast, mice and humans are functionally equivalent.

“Itseemed like the whole process was evolutionarily conserved,” said Zon.“But the difference is that yeast do not make hemoglobin. So we neededto figure out a mechanism that would explain why these fish that haveproblems making iron-sulfur clusters could not make hemoglobin.”

Otherresearchers' studies had indicated that the presence of iron-sulfurclusters in the cell is important for controlling an enzyme called ironregulatory protein 1 (IRP1). In turn, IRP1 regulates another enzymecalled ALAS2 that plays a key role in heme synthesis. Indeed,experiments by Zon and his colleagues demonstrated that the loss ofgrx5 in the mutant zebrafish inappropriately activates IRP1, whichblocks the synthesis of ALAS2, and thus heme production. For example,when they restored ALAS2 by injecting into the sir mutants a truncatedform of ALAS2 that lacked the portion of the molecule sensitive toIRP1, they complete restored the mutant zebrafish hemoglobin production.

“Peoplehave always thought that hemoglobin synthesis required only enough ironin the cell for heme production to proceed and then just the additionof the globin protein to form hemoglobin,” said Zon. “Now, we've addeda fourth component, iron-sulfur clusters, which are required for hemeproduction. This is a very interesting and unpredicted finding fromwhat we had known before, and our experiments have really defined a newpathway for hemoglobin production,” he said.

Zon said that thefindings could apply to developing new treatments for a rare form ofanemia, known as sideroblastic anemia, in which elevated IRP1 activitycauses a deficiency of ALAS2. In most cases, an increase in IRP1 islikely caused by a mutation in a transporter for iron-sulfur clustersthat traps them in mitochondria, where they cannot interact with IRP1to control it.

In a search for possible treatments for theanemia, Zon and his colleagues are exploring the genetic machinery ofhemoglobin production in zebrafish for targets of drugs that couldrestore normal levels of iron-sulfur clusters. “The pathway that wehave found is very sensitive, so our findings might be extended toenable treatments for other forms of anemia,” said Zon.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Researchers Discover New Route To Hemoglobin Synthesis." ScienceDaily. ScienceDaily, 22 August 2005. <www.sciencedaily.com/releases/2005/08/050821234823.htm>.
Howard Hughes Medical Institute. (2005, August 22). Researchers Discover New Route To Hemoglobin Synthesis. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2005/08/050821234823.htm
Howard Hughes Medical Institute. "Researchers Discover New Route To Hemoglobin Synthesis." ScienceDaily. www.sciencedaily.com/releases/2005/08/050821234823.htm (accessed September 22, 2014).

Share This



More Health & Medicine News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) — Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) — A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) — More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) — Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins