Featured Research

from universities, journals, and other organizations

Genomes Of More Than 200 Human Flu Strains Reveal A Dynamic Virus

Date:
October 6, 2005
Source:
NIH/National Institute of Allergy and Infectious Diseases
Summary:
In the first large-scale effort of its kind, researchers have determined the full genetic sequence of more than 200 distinct strains of human influenza virus. The information, being made available in a publicly accessible database, is expected to help scientists better understand how flu viruses evolve, spread and cause disease. The genomic data already has enabled scientists to determine why the 2003-4 annual influenza vaccine did not fully protect individuals against the flu that season.

In the first large-scale effort of its kind, researchers have determined the full genetic sequence of more than 200 distinct strains of human influenza virus. The information, being made available in a publicly accessible database, is expected to help scientists better understand how flu viruses evolve, spread and cause disease. The genomic data already has enabled scientists to determine why the 2003-4 annual influenza vaccine did not fully protect individuals against the flu that season.

The new genomes are the initial results of the Influenza Genome Sequencing Project, a joint effort of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), and multiple partners including NIH's National Center for Biotechnology Information (NCBI), the Wadsworth Center of the New York State Department of Health in Albany, NY, and The Institute for Genomic Research (TIGR) in Rockville, MD. The report was published online in the journal Nature on October 5.

"These new data give us the most comprehensive picture to date of how influenza viruses evolve and are transmitted throughout human populations," says NIAID Director Anthony S. Fauci, M.D. "This information could help us to make more effective vaccines, therapeutics and diagnostics against a disease that claims some 36,000 American lives each year."

The scientists, led by Elodie Ghedin, Ph.D., of TIGR, and Steven Salzberg, Ph.D., of the University of Maryland, College Park, fully sequenced 209 strains of flu virus, determining the order of more than 2.8 million nucleotide bases, the building blocks of DNA. Until now, the researchers note, most of the gene sequence information available to scientists comprised only relatively short fragments of flu genes that encode two of the virus' key surface proteins, hemagglutinin (H) and neuraminidase (N). In collaboration with David Lipman, M.D., and colleagues at NCBI, NIAID will rapidly make this sequence information publicly available through GenBank�, an international, searchable online database.

This was the first large-scale effort to sequence flu strains drawn at random from a geographically limited region: most strains came from samples submitted over five years to the New York State Department of Health. The sequenced strains were not pre-selected for virulence or other characteristics, giving researchers an unbiased view of flu virus evolution as it moved through a varied human population.

Although the viruses were drawn from a relatively small region, the researchers discovered a surprisingly large degree of genetic diversity in the sequences. They learned, for example, that three genetically distinct variants of the dominant H3N2 strain appeared over the study period. In some seasons, these variants circulated simultaneously; New York residents were suffering from similar, but distinct, versions of the virus.

With this new, highly detailed genomic information, the researchers found out why the 2003-04 flu vaccine provided only partial protection against that season's flu. During the 2002-03 season, distinctly different versions of the H3N2 flu virus underwent genetic mixing. The resulting strain emerged late in the season and became the predominant cause of flu the following year. However, the 2003-04 vaccine did not target the late-emerging version of H3N2 and so the vaccine provided less than optimal protection. In the future, say the researchers, rapid sequencing of flu strain variants could provide information needed to craft vaccines precisely tailored against the most virulent strains.

"Through the Influenza Genome Sequencing Project, techniques have been established to allow rapid sequencing of full genomes of influenza virus. This project continues to move toward our goal of revealing complete genetic blueprints of thousands of known human and avian influenza viruses over the next several years," says Maria Y. Giovanni, Ph.D., who oversees NIAID's flu genome sequencing project.

###

For more information about the Influenza Genome Sequencing Project, visit the project Web site at http://www.niaid.nih.gov/dmid/genomes/mscs/influenza.htm. A press release issued at the launch of the genome project in November, 2004, is available at http://www3.niaid.nih.gov/news/newsreleases/2004/flugenome.htm. More information about the National Center for Biotechnology Information, part of NIH's National Library of Medicine, is at http://www.ncbi.nih.gov/.

NIAID is a component of the National Institutes of Health, an agency of the U.S. Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on transplantation and immune-related illnesses, including autoimmune disorders, asthma and allergies.

Reference: E Ghedin et al. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature Published online Oct. 5, 2005. DOI: 10.1038/nature04239.


Story Source:

The above story is based on materials provided by NIH/National Institute of Allergy and Infectious Diseases. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute of Allergy and Infectious Diseases. "Genomes Of More Than 200 Human Flu Strains Reveal A Dynamic Virus." ScienceDaily. ScienceDaily, 6 October 2005. <www.sciencedaily.com/releases/2005/10/051006083221.htm>.
NIH/National Institute of Allergy and Infectious Diseases. (2005, October 6). Genomes Of More Than 200 Human Flu Strains Reveal A Dynamic Virus. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2005/10/051006083221.htm
NIH/National Institute of Allergy and Infectious Diseases. "Genomes Of More Than 200 Human Flu Strains Reveal A Dynamic Virus." ScienceDaily. www.sciencedaily.com/releases/2005/10/051006083221.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins