Featured Research

from universities, journals, and other organizations

New Gene Regulation Mechanism Discovered

Date:
October 26, 2005
Source:
Cold Spring Harbor Laboratory
Summary:
Researchers have discovered a new kind of messenger RNA molecule that is rapidly cleaved in response to cellular stress such as viral infection. The discovery reveals a "cut and run" mechanism that is likely to control the expression of many genes in humans and a variety of other organisms. A deeper understanding of this mechanism is predicted to have broad implications for biology and biomedical research.

Researchers at Cold Spring Harbor Laboratory have discovered a new kind of messenger RNA molecule that is converted from non-protein coding status to protein coding status in response to cellular stress such as viral infection. The discovery reveals a "cut and run" mechanism that is likely to control the expression of many genes in humans and a variety of other organisms.
Credit: Image courtesy of Cold Spring Harbor Laboratory

Researchers at Cold Spring Harbor Laboratory have discovered a new kind of messenger RNA molecule that is converted from non-protein coding status to protein coding status in response to cellular stress such as viral infection. The discovery reveals a "cut and run" mechanism that is likely to control the expression of many genes in humans and a variety of other organisms. A deeper understanding of this mechanism is predicted to have broad implications for biology and biomedical research.

The central dogma of molecular biology holds that the DNA of genes is "transcribed" into messenger RNA and messenger RNA is "translated" into protein. The regulation of transcription and translation ultimately determines whether particular genes are switched on to produce protein, or switched off. Once they are made, most messenger RNA molecules are exported from the cell nucleus to the cytoplasm and are then used in the cytoplasm as templates for the production of protein.

However, a few years ago, Cold Spring Harbor Laboratory scientists led by Dr. David Spector noticed that under standard growth conditions, a particular population of messenger RNA molecules lingered in the nucleus indefinitely--in structures they call "nuclear speckles"--and never reached the cytoplasm.

"We thought that these messenger RNAs must be doing something interesting by hanging around in the nucleus, but at the time we didn't have a way of finding out what that might be," says Spector. "Why would they be produced if they would never be used?"

Then one of Spector's graduate students developed a method for purifying speckles. That allowed the researchers to identify not only the many different protein components of speckles, but also the messenger RNAs that are the basis of the new study, published in the October 21 issue of the journal Cell. The study--spearheaded by Cold Spring Harbor Laboratory postdoctoral fellow Dr. Kannanganattu Prasanth--identified the first such messenger RNA: one transcribed from a mouse gene called mCAT2 that encodes a cell surface receptor.

"The first clue came when we found that the mCAT2 gene encodes two different kinds of messenger RNAs; the standard protein coding version that's exported to the cytoplasm as usual, and an atypical version that remains in the nucleus," says Spector. "But the big clue came when we thought about what the mCAT2 receptor does and why the mCAT2 gene would encode a messenger RNA that stays in the nucleus."

The scientists learned from the work of others that the mCAT2 receptor is involved in the production of nitric oxide, and that nitric oxide production is stimulated by various stress conditions including wound healing and viral infection.

"That told us that when cells are stressed, maybe the atypical messenger RNA is released from the nucleus, exported to the cytoplasm, and translated into protein, thus circumventing the time-consuming process of producing new messenger RNA and providing a rapid response to viral infection or other stresses," says Spector. To test this idea, the researchers mimicked the effect of viral infection by treating cells with interferon.

Sure enough, they discovered that the atypical mCAT2 messenger RNA in the nucleus was rapidly cleaved in response to interferon treatment, and that the protein coding portion of the molecule was then quickly exported to the cytoplasm and translated into protein (ILLUSTRATION AVAILABLE ON REQUEST).

"This 'cut and run' mechanism is a completely new paradigm of gene regulation, so studying it will keep us busy for a while. But we already suspect that there is going to be a large family of genes regulated in this way," says Spector.

###

In addition to Spector, Prasanth, and their colleagues at Cold Spring Harbor Laboratory, researchers at ISIS Pharmaceuticals (Carlsbad, CA) were involved in the study, which was funded by the National Institutes of Health (NIGMS, NCI) and the Louis Morin Charitable Trust.

Researchers familiar with but not involved in the study are available for comment. See Reporter Only text.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "New Gene Regulation Mechanism Discovered." ScienceDaily. ScienceDaily, 26 October 2005. <www.sciencedaily.com/releases/2005/10/051022234028.htm>.
Cold Spring Harbor Laboratory. (2005, October 26). New Gene Regulation Mechanism Discovered. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2005/10/051022234028.htm
Cold Spring Harbor Laboratory. "New Gene Regulation Mechanism Discovered." ScienceDaily. www.sciencedaily.com/releases/2005/10/051022234028.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins