Featured Research

from universities, journals, and other organizations

Charting The Path Of The Deadly Ebola Virus In Central Africa

Date:
October 27, 2005
Source:
Public Library of Science
Summary:
Over the past ten years, separate outbreaks of the deadly Zaire strain of Ebola virus (ZEBOV) have killed hundreds of humans and tens of thousands of great apes in Gabon and the Republic of Congo -- which harbor roughly 80% of the last remaining wild gorilla and chimpanzee populations. In a new study, Peter Walsh, Roman Biek, and Leslie Real combined genetic data with information on the timing and location of past ZEBOV outbreaks to support the hypothesis that a "consistently moving wave of ZEBOV infection" recently spread to outbreak sites in Gabon and Congo.

Repeated outbreaks of the Zaire strain of the Ebola virus (Ebola virions pictured above) in central Africa were caused by a recent spread of the virus, rather than by a long-persistent strain at each site.
Credit: Photo : Walsh et al.

Thanks to sensationalized accounts of patients with liquefying flesh and spouting blood, the Ebola virus may well be the most feared disease on the planet. But the reality of the virus, which strikes humans and other primates, is grim enough, with patients experiencing sudden onset of fever, headache, intense weakness, and muscle pain, followed by diarrhea, vomiting, severe rash, organ failure, and massive hemorrhaging, sometimes external, within two to 21 days of exposure. The first human Ebola outbreaks occurred between 1976 and 1979 in Sudan and Zaire (now the Democratic Republic of Congo), where 88% of the 318 infected persons died—a typical mortality rate for this strain, called the Zaire strain of Ebola virus (ZEBOV). It's thought that humans acquired the virus after handling infected gorilla and chimp carcasses.

Over the past ten years, separate outbreaks of the deadly Zaire strain have killed hundreds of humans and tens of thousands of great apes in Gabon and the Republic of Congo—which harbor roughly 80% of the last remaining wild gorilla and chimpanzee populations. Between 1983 and 2000, poaching and logging precipitated catastrophic declines in these great apes, but scientists fear that Ebola may pose an equally deadly threat. Any efforts to contain the next epidemic depend on understanding the dynamics of the virus's spread.

In a new study, Peter Walsh, Roman Biek, and Leslie Real combined genetic data with information on the timing and location of past ZEBOV outbreaks to determine the merits of two competing hypotheses to explain the emergence and spread of the virus. In the prevailing view, ZEBOV arose from long-persistent local strains after increased contact between humans or great apes and an unidentified reservoir host. But Walsh et al. found support for the alternative hypothesis: that ZEBOV had recently spread to the outbreak regions. This is good news because a virus that spreads at a predictable rate in a predictable direction is far easier to control than one that emerges by chance or at the hands of an unknown trigger.

The authors modeled the virus's spread based on assumptions of a long-persistent virus versus a recently emerged virus, and tested the predictions of these competing hypotheses using genetic data—gathered from gene sequences taken from human samples at the different outbreak sites—and information on the spatiotemporal dynamics of the outbreaks. Charting the evolutionary relationships of the viral genotypes identified one major lineage with a most recent common ancestor consistent with the 1976 outbreak. Comparing the path of descent with outbreak localities mirrored the timing of the outbreaks, with new outbreaks directly descending from those preceding.

Analyzing the spatiotemporal pattern of outbreaks revealed a spread at the rate of about 50 kilometers/year—a predictable path not likely for a persistent virus—with the first epidemic in Yambuku, then spreading south to Kikwit and west to Booué, Gabon. Plotting the geographic distribution of genotypes revealed a clear spatial structure at both local and regional scales: the genotypes from the 2001–2003 Gabon/Congo outbreaks, for example, decreased in genetic similarity as distance increased. Again, this finding is consistent with the recently emerged hypothesis, which predicts a correlation between genotype and geography at different distances. Simulations of viral evolution in a spreading epidemic also showed a consistent spread pattern and a strong correlation between genetic divergence and spatial separation. Though the authors can't say how the virus was transmitted, the simulations showed that a “simple nearest neighbor contact process” could produce the linear, uniform spread rates found here.

Though the strength of the individual lines of evidence—timing of origin, spatial spread, and genetic/distance ratio—is not conclusive when considered separately, taken together, they support the hypothesis that a “consistently moving wave of ZEBOV infection” recently spread to outbreak sites in Gabon and Congo. Following its current course, ZEBOV may hit populated areas east of Odzala National Park within 1–2 years and reach most parks containing large populations of western gorillas in 3–6 years. Two Ebola outbreaks have already hit human populations west of Odzala, and over the past two years, the largest gorilla and chimp populations in the world, found in Odzala, have been devastated—the disease is spreading to the last unaffected sector of the park right now. These findings suggest that strategies to protect villagers and some of the last remaining wild apes from future outbreaks would do best to concentrate efforts at the front of the advancing wave—and start acting now.

###

Citation: (2005) Charting the Path of the Deadly Ebola Virus in Central Africa. PLoS Biol 3(11): e403


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "Charting The Path Of The Deadly Ebola Virus In Central Africa." ScienceDaily. ScienceDaily, 27 October 2005. <www.sciencedaily.com/releases/2005/10/051027091603.htm>.
Public Library of Science. (2005, October 27). Charting The Path Of The Deadly Ebola Virus In Central Africa. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2005/10/051027091603.htm
Public Library of Science. "Charting The Path Of The Deadly Ebola Virus In Central Africa." ScienceDaily. www.sciencedaily.com/releases/2005/10/051027091603.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) — Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) — Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) — A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins