Featured Research

from universities, journals, and other organizations

Long-term Memory Controlled By Molecular Pathway At Synapses

Date:
January 15, 2006
Source:
Harvard University
Summary:
Harvard University biologists have identified a molecular pathway active in neurons that interacts with RNA to regulate the formation of long-term memory in fruit flies. The same pathway is also found at mammalian synapses, and could eventually present a target for new therapeutics to treat human memory loss.

Sam Kunes (left) professor of molecular and cellular biology in Harvard's Faculty of Arts and Sciences, and postdoctoral fellow Sovon Ashraf have identified a molecular pathway active in neurons that interacts with RNA to regulate the formation of long-term memory in fruit flies. The same pathway is also found at mammalian synapses, and could eventually present a target for new therapeutics to treat human memory loss.
Credit: Photo credit: Jon Chase/Harvard News Office

Harvard University biologists have identified a molecular pathway active in neurons that interacts with RNA to regulate the formation of long-term memory in fruit flies. The same pathway is also found at mammalian synapses, and could eventually present a target for new therapeutics to treat human memory loss.

The findings will be presented this week on the web site of the journal Cell.

Even for a fruit fly, learning and memory are important adaptive tools that facilitate survival in the environment. A fly can learn to avoid what may do it harm, such as a flyswatter, or in the laboratory, an electric shock that happens when it smells a certain odor.

"It has been known for some time that learning and long-term memory require synthesis of new proteins, but exactly how protein synthesis activity relates to memory creation and storage has not been clear," says Sam Kunes, professor of molecular and cellular biology in Harvard's Faculty of Arts and Sciences. "We have been able to monitor, for the first time, the synthesis of protein at the synapses between neurons as an animal learns, and we found a biochemical pathway that determines if and where this protein synthesis happens. This pathway, called RISC, interacts with RNA at synapses to facilitate the protein synthesis associated with forming a stable memory. In fruit flies, at least, this process makes the difference between remembering something for an hour and remembering it for a day or more."

Together with lead author Shovon Ashraf, a postdoctoral researcher in Harvard's Department of Molecular and Cellular Biology, and Harvard undergraduates Anna McLoon and Sarah Sclarsic, Kunes found that messenger RNA (mRNA) -- a genetic photocopy that conveys information from DNA to a cell's translation machinery -- is transported to synapses as a memory begins to form. This mRNA transport, and the protein synthesis that follows, are facilitated by components of the RISC pathway, which use very short RNA molecules called microRNAs to guide their activity. One of these RISC proteins, called Armitage, appears to be a critical regulatory molecule in long-lasting memory formation, and has to be destroyed at particular synapses in order for protein synthesis to occur there.

By manipulating the RISC pathway, Kunes and colleagues were able to alter flies' memory, changing their response to stimuli in subsequent behavioral tests. Using a classical learning test that simultaneously exposes the insects to an odor and an electric shock, the researchers found that long-term memory could be greatly increased by adjusting the activity of the RISC pathway in the fruit flies.

"In essence, these flies had twice the memory of their normal counterparts," Kunes says. "When RISC was knocked out, so was long-term memory, and flies would remember to alter their behavior in the presence of the shock-linked odor for perhaps an hour; that is, they only had short-term memory. When the pathway was normally active, the flies remained averse to the odor for a day or more."

Kunes says the various proteins that comprise the RISC pathway are also found at synapses in mice and humans, suggesting the pathway has been conserved by evolution and that it could be a target for new medications to boost human memory.

###

This research was funded by Harvard's Faculty of Arts and Sciences.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Cite This Page:

Harvard University. "Long-term Memory Controlled By Molecular Pathway At Synapses." ScienceDaily. ScienceDaily, 15 January 2006. <www.sciencedaily.com/releases/2006/01/060114233355.htm>.
Harvard University. (2006, January 15). Long-term Memory Controlled By Molecular Pathway At Synapses. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2006/01/060114233355.htm
Harvard University. "Long-term Memory Controlled By Molecular Pathway At Synapses." ScienceDaily. www.sciencedaily.com/releases/2006/01/060114233355.htm (accessed July 30, 2014).

Share This




More Mind & Brain News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins