Featured Research

from universities, journals, and other organizations

New Possibilities To Fight Pests With Biological Means

Date:
January 18, 2006
Source:
Max Planck Society
Summary:
Max Planck researchers in Jena, Germany have identified a gene which produces a chemical "cry for help" that attracts beneficial insects to damaged plants. This gene carries information for a terpene synthase, an enzyme forming the sesquiterpene scent compounds that are released by the plant and attract wasps toward the damaged corn plant. Since this mechanism is based only on a single gene, it might be useful for the development of crop plants with a better resistance to pests.

Maize plants defend themselves by attracting the enemies of their enemies: caterpillars feeding on the leaf of a corn plant are in turn attacked by a parasitic wasp.
Credit: Image : University of Neuchβtel/T. Turlings

A genetic mechanism that enables corn plants to "cry for help" and attract beneficial insects has been clarified by scientists from the University of Neuchβtel, Switzerland and the Max Planck Institute for Chemical Ecology in Jena. Corn plants emit a cocktail of scents when they are attacked by certain pests, such as a caterpillar known as the Egyptian cotton leaf worm. Parasitic wasps use these plant scents to localize the caterpillar and deposit their eggs on it, so that their offspring can feed on the caterpillar. Soon after, the caterpillar dies and the plant is relieved from its attacker. In the case of corn, only one gene, TPS10, has to be activated to attract the parasitic wasps. This gene carries information for a terpene synthase, an enzyme forming the sesquiterpene scent compounds that are released by the plant and attract wasps toward the damaged corn plant. Since this mechanism is based only on a single gene, it might be useful for the development of crop plants with a better resistance to pests (PNAS, Early Edition, January 16-20, 2006).

Related Articles


At least 15 species of plants are known to release scents after insect damage, thus attracting the enemies of their enemies. Scientists term this mechanism "indirect defence". A previous cooperation by the scientists in Neuchatel and Jena showed that indirect defence functions not only above ground, but also below the earth’s surface [1].

To understand the biochemistry behind this plant defence, biologists of the Max Planck institute studied corn plants, caterpillars of the species Spodoptera littoralis (Egyptian cotton leaf worm) and parasitic wasps of the species Cotesia marginiventris. Deciphering the complex mix of scents that the plants release after damage offered clues as to which classes of enzymes might be important for scent production.

The researchers isolated various genes encoding terpene synthases, the enzymes that produce these scents. One of these genes, TPS10, produced the exact bouquet of nine scent compounds that was released by the damaged corn plant. To demonstrate that TPS10 is indeed the important gene, the scientists introduced TPS10 into another plant, called Arabidopsis thaliana, which then released the same scents that have been observed in corn. To test whether these scents do attract the parasitic wasps, these plants were tested in an olfactometer, a device to study insect behaviour.

The researchers placed scent-producing as well as unmodified plants in the six arms of the olfactometer. When the predatory wasps were set free in the central cylinder of the olfactometer, they flew towards the scent-producing plants. The experiments led to an additional, surprising result: in order to react this way, the wasps needed a first exposure to both the corn scent and the caterpillar which led them to associate the two. Young, "naive" wasps without this experience could not distinguish between scent-producing plants and control plants, or failed to move at all.


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "New Possibilities To Fight Pests With Biological Means." ScienceDaily. ScienceDaily, 18 January 2006. <www.sciencedaily.com/releases/2006/01/060117112550.htm>.
Max Planck Society. (2006, January 18). New Possibilities To Fight Pests With Biological Means. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2006/01/060117112550.htm
Max Planck Society. "New Possibilities To Fight Pests With Biological Means." ScienceDaily. www.sciencedaily.com/releases/2006/01/060117112550.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) — For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) — An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) — The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins