Featured Research

from universities, journals, and other organizations

Sea Coral's Trick Helps Scientists Tag Proteins

Date:
March 21, 2006
Source:
Howard Hughes Medical Institute
Summary:
The glow emitted by a variety of sea coral helped Russian scientists harness the protein that generates the light to create a tiny fluorescent tag that responds to visible light. The two-color tag should help researchers follow individual proteins as they dart around inside living cells.

An image of a single mamalian cell with green-to-red fluorescent Dendra marking fibrillarin, a protein concentrated in nucleoli, which are small, round bodies in the cell's nucleus, composed of protein and RNA.
Credit: Image : Sergey Lukyanov

The glow emitted by a variety of sea coral helped Russian scientists harness the protein that generates the light to create a tiny fluorescent tag that responds to visible light. The two-color tag should help researchers follow individual proteins as they dart around inside living cells.

Under a microscope, the two-color tag—called Dendra because it is derived from the sea coral Dendronephthya—first shows up as a green glow, highlighting the otherwise invisible protein to which it is attached. The green turns to red when the tags are zapped with an intense pulse of visible blue light.

The dramatic color change "makes it possible to precisely label an object, such as a cell, organelle, or protein, with a flash of light and then to follow the object's movement over time," said Konstantin Lukyanov, whose group conducted the Dendra research in the lab of his brother, Sergey Lukyanov, a Howard Hughes Medical Institute (HHMI) international research scholar at the Institute of Bioorganic Chemistry of the Russian Academy of Sciences in Moscow. "This tool opens new possibilities for studying protein and organelle dynamics in living cells, cell migration during embryogenesis, inflammation, and other pathological and normal processes," he said.

Unlike other green-to-red fluorescent markers, Dendra can be activated by visible blue light, which is less harmful to living cells and does not require special laser equipment, Konstantin Lukyanov explained. In fact, the light source of the laser-scanning confocal microscopes that researchers commonly use to peer into living cells can activate the tag, which should make the new tool useful to many scientists, said Sergey Lukyanov, whose lab reports on the Dendra tag in the April 2006 issue of Nature Biotechnology, published in advance online on March 19, 2006.

Importantly, Dendra is small enough to highlight proteins without interfering with their folding or function. And the researchers have demonstrated that it can switch shades at the body temperature of birds and mammals, which are popular research models. Its usefulness is further enhanced by the fact that it stays red for long-term protein tracking, Sergey Lukyanov explained.

Dendra is the latest addition to the growing family of photoactivatable fluorescent proteins (PAFPs), innovative imaging tools first made possible by Douglas Prasher, who isolated the gene for green fluorescent protein (GFP) from a species of bioluminescent jellyfish in 1992, and Martin Chalfie, who first used GFP for labeling in 1994, said Marc Zimmer, a computational chemist at Connecticut College and author of Glowing Genes: A Revolution in Biotechnology (2005). Since then, HHMI investigator Roger Tsien has developed a veritable rainbow of refined high-performance GFP mutants.

A major breakthrough in fluorescent protein applications came when Sergey Lukyanov first found GFP-like proteins in corals, Zimmer said. Before Lukyanov, no one had looked for GFP-like proteins in corals because they do not glow in the dark like fireflies and jellyfish. The corals' native green and red fluorescent proteins give off light only when stimulated by higher intensity light. Lukyanov's findings resulted in the discovery of many new GFP-like proteins in non-bioluminescent and sometimes even non-fluorescent marine organisms, Zimmer said.

Meanwhile, Sergey Lukyanov and other researchers had discovered that certain wavelengths of light could cause striking spectral changes in some proteins, which could convert from dark to light or change colors. Later, the Russian scientist and his colleagues discovered that the GFP-like protein they isolated from Dendronephthya had this capacity to change color, but it was too big to be useful for many research applications.

So the Lukyanovs and colleagues set out to create a smaller and more versatile version of their fluorescent protein. They systematically mutated the DNA sequence that encodes the fluorescent protein, then expressed the resulting mutant proteins in bacteria until they found one that could be irreversibly converted from green to red.

As with GFP, the sequence for Dendra and an accompanying short amino acid tail can be inserted into the gene encoding the protein a scientist wants to study. In living cells, the fluorescent tail is produced along with the protein, acting like a beacon to researchers who want to learn what the main protein does and where it goes.

To test how well the new tag labeled and tracked target proteins, the team fused Dendra to proteins that form the cytoskeleton of the cell, including actin and tubulin filaments, and found the expected patterns of intracellular protein distribution.

Dendra belongs to a small family of green-to-red PAFPs. The first protein in this family, Kaede—which is Japanese for maple leaf—was discovered by Japanese researcher Atsushi Miyawaki four years ago. "All known Kaede-like proteins are sensitive to ultraviolet light irradiation, which results in immediate conversion from green to red fluorescence, but they are not sensitive to blue light," Konstantin Lukyanov said.

So the researchers did not expect Dendra to be activated by low-toxic visible light. "It was very surprising for us to observe an efficient Dendra photoconversion upon illumination with intense blue light," Konstantin Lukyanov said. "We still have no clear explanation for why Dendra differs from other Kaede-like fluorescent proteins."

Sergey Lukyanov pointed out that the ultraviolet light required to activate many PAFPs can be toxic to cells, and can dramatically alter their biochemistry. Further, the equipment needed to generate ultraviolet light can be expensive and in short supply. "We anticipate that Dendra will broaden considerably the circle of PAFP users," he said.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Sea Coral's Trick Helps Scientists Tag Proteins." ScienceDaily. ScienceDaily, 21 March 2006. <www.sciencedaily.com/releases/2006/03/060319173319.htm>.
Howard Hughes Medical Institute. (2006, March 21). Sea Coral's Trick Helps Scientists Tag Proteins. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2006/03/060319173319.htm
Howard Hughes Medical Institute. "Sea Coral's Trick Helps Scientists Tag Proteins." ScienceDaily. www.sciencedaily.com/releases/2006/03/060319173319.htm (accessed September 21, 2014).

Share This



More Plants & Animals News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins