Featured Research

from universities, journals, and other organizations

New Tool For Studying Hovering Flight Of Insects And Birds

Date:
May 1, 2006
Source:
New York University
Summary:
A tool for examining hovering flight of insects and birds could allow researchers to study other matters pertaining to locomotion, Stephen Childress, a professor at New York University's Courant Institute of Mathematical Sciences, demonstrated at the American Association for the Advancement of Science (AAAS) annual meeting in St. Louis.

Still image of a juvenile pteropod flapping.
Credit: Image courtesy of New York University

A tool for examining hovering flight of insects and birds could allow researchers to study other matters pertaining to locomotion, Stephen Childress, a professor at New York University's Courant Institute of Mathematical Sciences, demonstrated at the American Association for the Advancement of Science (AAAS) annual meeting in St. Louis. The findings were part of a symposium, "How Insects Fly," which also included researchers from Cornell University and the California Institute of Technology.

Previous research in this area was conducted through observations of a small pteropod mollusk, or "sea butterfly," whose locomotion in water is similar to that of a butterfly's flight. That revealed two modes of locomotion: in one, cilia mode, the organism swims forward much like a micro-organism, using waves of beating cilia, or hair-like structures; in another, flapping mode, the wings are extended and flapped back and forth in a symmetrical manner, propelling the body forward. These results showed that this particular organism was able to use both modes: one pertaining to the microorganisms, the other to the insects or birds. As the pteropods grew, observations by Childress with his colleague, Robert Dudley, a biologist at the University of California, Berkeley, showed that the wings enabled more rapid swimming. Extrapolating the data backwards to small size, it was found that wings ceased to be effective at a critical size, establishing a transition size for winged flight.

Building on this scholarship, Childress and his colleagues at the Courant Institute's Applied Mathematics Laboratory sought ways to study free flight in the laboratory. They first replicated the forward flight of the pteropod by driving a horizontal rigid blade in a vertical oscillation while immersed in fluid. The blade was mounted on a vertical shaft, free to rotate in either direction. The blade flapped horizontally according to Newton's law of motion. It was found that the transition seen in the pteropods occurred also with the flapping blade. The transition depends upon both the size of the blade and the frequency of flapping. The researchers were thus able to study the transition by varying the frequency instead of the size. Below a certain frequency the blade ceased to rotate.

To simulate the hovering flight of a flapping body, the researchers created a vertical "oscillating wind tunnel," by using a large speaker operated in the range 10-100 Hertz and driving an oscillating column of air in a vertical, cylindrical flight chamber. They then simulated a bug using a small winged body made of paper and placing it in the airflow. The wings are driven to flap and the bug hovers in the flow. This allows analysts to compare the hovering of a passive flexible body in an oscillating airflow with that of an active flapper. The researchers then measured the minimum airflow amplitude needed for geometrically similar bugs of various sizes to hover in the oscillating air and were able to show how the optimal flapping frequency changes with size.

Childress and his colleagues are presently comparing these observations of free passive flapping flight with models of insect flight. The work promises to provide a new approach to the study of flapping flight, enabling studies of free hovering of winged bodies.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "New Tool For Studying Hovering Flight Of Insects And Birds." ScienceDaily. ScienceDaily, 1 May 2006. <www.sciencedaily.com/releases/2006/04/060430230035.htm>.
New York University. (2006, May 1). New Tool For Studying Hovering Flight Of Insects And Birds. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2006/04/060430230035.htm
New York University. "New Tool For Studying Hovering Flight Of Insects And Birds." ScienceDaily. www.sciencedaily.com/releases/2006/04/060430230035.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins