Featured Research

from universities, journals, and other organizations

Bioengineering Efficient Antibiotic Biosynthesis In E. Coli

Date:
February 21, 2007
Source:
Public Library of Science
Summary:
An erythromycin-producing E. coli recombinant strain with an antibiotic-overproducing mutation in the mycarose biosynthesis pathway produced second-generation mutants capable of directed biosynthesis of enhanced precursor macrolide antibiotics.

The pathways underlying the production of antibiotics are now quite well known. For example, the antibacterial activity of erythromycin, an important polyketide antibiotic precursor, requires the transfer of two unusual sugars called mycarose and desosamine (both glycosyl groups) onto the nonsugar part of the glycoside molecule (macrocyclic aglycone).

Related Articles


In a new study published online this week in the open-access journal PLoS Biology, Ho Young Lee and Chaitan Khosla demonstrate how they used bioassay-guided evolution of this antibiotic pathway in Escherichia coli (E. coli) to identify more efficient antibiotic-producing mutants.

The authors reconstituted the biosynthetic pathways of both sugars in E. coli to yield the 6-deoxyerythromycin D antibiotic. By engineering a recombinant strain of E. coli that produces the bioactive macrolide 6-deoxyerythromycin D from propionate, they developed a fundamentally new tool for enhancing the efficiency of biosynthetic engineering of this class of antibiotics.

Initially, this recombinant strain produced barely enough antibiotic activity to establish an activity-based screening assay. The authors therefore used the assay to screen for antibiotic overproducers. After three rounds of screening, they were able to identify E. coli cells that overproduced the 6-deoxyerythromycin D antibiotic with significant modifications in the mycarose biosynthetic pathway. They used the same activity-based screening system to evolve E. coli mutants capable of more efficient precursor-directed biosynthesis.

As the first example of bioassay-guided evolution of an antibiotic pathway in E. coli, these results open the door for harnessing the power of genetics for mechanistic investigations into polyketide synthases and also for biosynthetic engineering.

Citation: Lee HY, Khosla C (2007) Bioassay-guided evolution of glycosylated macrolide antibiotics in Escherichia coli. PLoS Biol 5(2): e45. doi:10.1371/journal.pbio.0050045.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "Bioengineering Efficient Antibiotic Biosynthesis In E. Coli." ScienceDaily. ScienceDaily, 21 February 2007. <www.sciencedaily.com/releases/2007/02/070206095856.htm>.
Public Library of Science. (2007, February 21). Bioengineering Efficient Antibiotic Biosynthesis In E. Coli. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2007/02/070206095856.htm
Public Library of Science. "Bioengineering Efficient Antibiotic Biosynthesis In E. Coli." ScienceDaily. www.sciencedaily.com/releases/2007/02/070206095856.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
Mysterious Glow Worms Found in the Amazon

Mysterious Glow Worms Found in the Amazon

Buzz60 (Nov. 20, 2014) Wildlife photographer Jeff Cremer teamed up with entomologist Aaron Pomerantz and others to investigate a predatory glow worm found in the Amazon. Patrick Jones (@Patrick_E_Jones) explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins