Featured Research

from universities, journals, and other organizations

Researchers Develop Resin Beads That Capture Mad Cow Disease Agent From Blood

Date:
February 26, 2007
Source:
North Carolina State University
Summary:
For the first time, experimental results indicate that it is possible to use a resin filter to remove harmful prion proteins from the blood of an infected animal, a finding that has major implications for the removal of infectious prion proteins -- the agents associated with variant Creutzfeldt-Jakob disease, mad cow disease, scrapie and other prion diseases in animals -- during blood transfusions.

Dr. Ruben Carbonell examines the blood transfusion filter he helped develop. It will be manufactured under the trade name P-Capt® Filter by MacoPharma. (Credit: Photo by Roger Winstead / Courtesy of North Carolina State University)
Credit: Photo by Roger Winstead / Courtesy of North Carolina State University

For the first time, experimental results indicate that it is possible to use a resin filter to remove harmful prion proteins from the blood of an infected animal, a finding that has major implications for the removal of infectious prion proteins – the agents associated with variant Creutzfeldt-Jakob disease, mad cow disease, scrapie and other prion diseases in animals – during blood transfusions.

Related Articles


Dr. Ruben Carbonell, Frank Hawkins Kenan Professor of Chemical and Biomolecular Engineering and director of the Kenan Institute for Engineering, Technology and Science at North Carolina State University, and scientists from the University of Maryland at Baltimore’s VA Medical Center, the American Red Cross and ProMetic BioSciences, a biotechnology company, developed small resin beads with molecules that are able to bind to harmful prion proteins. The beads serve as an adsorption filter, capturing the bad proteins and allowing other blood components to be effectively cleansed of the prion-disease-causing agents.

A paper describing the research was published in the Dec. 23/30 version of The Lancet.

In prion diseases, which are called transmissible spongiform encephalopathies, prion proteins unfold and cause plaques in animal and human brains. Transmission of prion diseases has impacted the availability and cost of blood donations, especially in Europe.

In the Lancet study, the researchers took the blood of scrapie-infected hamsters and removed the white blood cells using a device called a leukofilter. The leukoreduced blood was then passed through another filter containing the new resin particles engineered to capture the prion proteins. A group of disease-free hamsters was inoculated with the blood that passed through the leukofilter only. A second group was inoculated with the blood that passed through both the leukofilter and the prion-capture filter.

The researchers found that while leukoreduction itself removed a good deal of the bad proteins – approximately 72 percent – none of the nearly 100 hamsters inoculated with the leukoreduced, resin-filtered blood were infected with scrapie by the end of the 550-day test. Fifteen of 99 hamsters receiving leukoreduced blood not passed through the resin filter were infected with scrapie.

After the experiment was completed, the researchers analyzed the brains of hamsters still alive at the end of the testing period. No evidence of scrapie was discovered in brains of hamsters that were inoculated with the resin-filtered blood.

Aided by scientists in NC State’s Nonwovens Cooperative Research Center, located in the College of Textiles, Carbonell and his colleagues have now developed a new filter to remove prions from donated blood during transfusions. The device takes donated blood from a blood bag, passes it through several “sandwiches” of the prion-capture resin beads placed between nonwoven fabric membranes, and places the filtered blood in a separate blood bag prior to infusion into a patient or blood donation recipient.

The filter device, to be manufactured under the trade name P-Capt® Filter by MacoPharma, has received CE Mark regulatory approval in Europe.

Carbonell and his colleagues are now looking for ways of targeting other pathogens in blood such as Hepatitis A virus, B19 parvovirus and Hepatitis C virus. He says it should be possible to engineer new molecules that capture prion proteins and viruses and to place them on a single filter to further enhance the safety of blood transfusions.

The research was funded by Pathogen Removal and Diagnostic Technologies Inc. (PRDT), a joint venture of the American Red Cross and ProMetic BioSciences, owned in part by Carbonell and Dr. Robert Rohwer from the University of Maryland.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "Researchers Develop Resin Beads That Capture Mad Cow Disease Agent From Blood." ScienceDaily. ScienceDaily, 26 February 2007. <www.sciencedaily.com/releases/2007/02/070224093334.htm>.
North Carolina State University. (2007, February 26). Researchers Develop Resin Beads That Capture Mad Cow Disease Agent From Blood. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2007/02/070224093334.htm
North Carolina State University. "Researchers Develop Resin Beads That Capture Mad Cow Disease Agent From Blood." ScienceDaily. www.sciencedaily.com/releases/2007/02/070224093334.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) — A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) — Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins