Featured Research

from universities, journals, and other organizations

Biologists Solve Vitamin Puzzle

Date:
March 26, 2007
Source:
Massachusetts Institute of Technology
Summary:
Solving a mystery that has puzzled scientists for decades, MIT and Harvard researchers have discovered the final piece of the synthesis pathway of vitamin B12-the only vitamin synthesized exclusively by microorganisms.

This is a ribbon diagram of the enzyme BluB, which MIT researchers have shown catalyzes the formation of DMB, a fragment of vitamin B12. The stick drawings (in yellow, red and blue) represent cofactors that the enzyme cannibalizes to form DMB.
Credit: Graham Walker laboratory

Solving a mystery that has puzzled scientists for decades, MIT and Harvard researchers have discovered the final piece of the synthesis pathway of vitamin B12--the only vitamin synthesized exclusively by microorganisms.

B12, the most chemically complex of all vitamins, is essential for human health. Four Nobel Prizes have been awarded for research related to B12, but one fragment of the molecule remained an enigma--until now.

The researchers report that a single enzyme synthesizes the fragment, and they outline a novel reaction mechanism that requires cannibalization of another vitamin.

The work, which has roots in an MIT undergraduate teaching laboratory, "completes a piece of our understanding of a process very fundamental to life," said Graham Walker, MIT professor of biology and senior author of a paper on the work that will appear in the March 22 online edition of Nature.

Vitamin B12 is produced by soil microbes that live in symbiotic relationships with plant roots. During the 1980s, an undergraduate research course taught by Walker resulted in a novel method for identifying mutant strains of a soil microbe that could not form a symbiotic relationship with a plant.

Walker's team has now found that one such mutant has a defective form of an enzyme known as BluB that leaves it unable to synthesize B12.

BluB catalyzes the formation of the B12 fragment known as DMB, which joins with another fragment, produced by a separate pathway, to form the vitamin. One of several possible reasons why it took so long to identify BluB is that some bacteria lacking the enzyme can form DMB through an alternate pathway, Walker said.

One of the most unusual aspects of BluB-catalyzed synthesis is its cannibalization of a cofactor derived from another vitamin, B2. During the reaction, the B2 cofactor is split into more than two fragments, one of which becomes DMB.

Normally, the B2-derived cofactor would assist in a reaction by temporarily holding electrons and then giving them away. Such cofactors are not consumed in the reaction.

Cannibalization of a cofactor has very rarely been observed before in vitamin synthesis or any type of biosynthetic pathway, says Michiko Taga, an MIT postdoctoral fellow in Walker's lab and lead co-author of the Nature paper.

"There are almost no other examples where the cofactor is used as a substrate," she said.

One early clue to BluB's function was that a gene related to it is located near several other genes involved in B12 synthesis in a different bacterium. Still, the researchers were not convinced that one enzyme could perform all of the complicated chemistry needed to produce DMB.

"It looked like a number of things had to happen in order to make the DMB," said Walker. "We originally thought that BluB might be just one of several enzymes involved in DMB synthesis."

Therefore, it came as a surprise when Taga isolated the BluB protein and showed that it could make DMB all by itself.

Nicholas Larsen, lead co-author and a former college classmate of Taga's now at Harvard Medical School, did a crystallographic analysis of the protein after Taga told him about her research over coffee one day. The protein structure he developed clearly shows the "pocket" of BluB where the DMB synthesis reaction takes place.

Still to be explored is the question of why soil bacteria synthesize B12 at all, Walker said. Soil microorganisms don't require B12 to survive, and the plants they attach themselves to don't need it either, so he speculates that synthesizing B12 may enable the bacteria to withstand "challenges" made by the plants during the formation of the symbiotic relationship.

More than 30 genes are involved in vitamin B12 synthesis, and "that's a lot to carry around if you don't need to make it," Walker said.

The full implications of the new research will probably not be known for some years, which is often the case with basic research, Walker said. "I've been in many other situations in research where we did something very basic and did not immediately realize the importance of it, and subsequently the implications were found to be much more broad-reaching," he said.

Other authors on the paper are Annaleise Howard-Jones, a postdoctoral fellow at Harvard Medical School, and Christopher Walsh, professor of biological chemistry and molecular pharmacology at Harvard Medical School.

The research was funded by the National Institutes of Health and the Jane Coffin Childs Memorial Fund for Medical Research.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Biologists Solve Vitamin Puzzle." ScienceDaily. ScienceDaily, 26 March 2007. <www.sciencedaily.com/releases/2007/03/070322191151.htm>.
Massachusetts Institute of Technology. (2007, March 26). Biologists Solve Vitamin Puzzle. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2007/03/070322191151.htm
Massachusetts Institute of Technology. "Biologists Solve Vitamin Puzzle." ScienceDaily. www.sciencedaily.com/releases/2007/03/070322191151.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins