Featured Research

from universities, journals, and other organizations

Meeting The Ethanol Challenge: Scientists Use Supercomputer To Target Cellulose Bottleneck

Date:
April 25, 2007
Source:
University of California - San Diego
Summary:
Termites and fungi already know how to digest cellulose, but the human process of producing ethanol from cellulose remains slow and expensive. The central bottleneck is the sluggish rate at which the cellulose enzyme complex breaks down tightly bound cellulose into sugars, which are then fermented into ethanol.

Scientists used an SDSC supercomputer to help improve cellulose conversion to ethanol. Their “virtual molecules” show how the enzyme complex may change shape to straddle a broken cellulose chain, gaining a crucial foothold to digest cellulose into sugar molecules, which can then be fermented into ethanol.
Credit: Image courtesy of Ross Walker and Amit Chourasia, SDSC and Michael Crowley and Mark Nimlos, NREL.

Termites and fungi already know how to digest cellulose, but the human process of producing ethanol from cellulose remains slow and expensive. The central bottleneck is the sluggish rate at which the cellulose enzyme complex breaks down tightly bound cellulose into sugars, which are then fermented into ethanol.

Related Articles


To help unlock the cellulose bottleneck, a team of scientists has conducted molecular simulations at the San Diego Supercomputer Center (SDSC), based at UC San Diego. By using “virtual molecules,” they have discovered key steps in the intricate dance in which the enzyme acts as a molecular machine -- attaching to bundles of cellulose, pulling up a single strand of sugar, and putting it onto a molecular conveyor belt where it is chopped into smaller sugar pieces.

“By learning how the cellulase enzyme complex breaks down cellulose we can develop protein engineering strategies to speed up this key reaction,” said Mike Cleary, who is coordinating SDSC’s role in the project. “This is important in making ethanol from plant biomass a realistic ‘carbon neutral’ alternative to the fossil petroleum used today for transportation fuels.”

A convergence of factors from looming global warming to unstable international oil supplies is driving a surge in renewable biofuels such as ethanol, with worldwide ethanol production more than doubling between 2000 and 2005. To date, corn has been the favorite ethanol source. While good news for farmers, corn prices have doubled in the past two years, and consumers worldwide are feeling the pinch as food prices climb.

A far better source is to produce ethanol from cellulose, easing pressure on foo d supplies and yielding greater greenhouse gas benefits. The fibrous part that makes up the bulk of plants, cellulose is the cheapest and most abundant plant material, from corn stalks left after harvest to wood chips from papermills and fast-growing weeds.

“Our simulations have given us a better understanding of the interactions between the enzyme complex and cellulose at the molecular level -- the computer model showed us how the binding portion of this enzyme changes shape, which hadn’t been anticipated by the scientific community,” said first author Mark Nimlos, a Senior Scientist at NREL. “These results are important because they can provide crucial guidance as scientists formulate selective experiments to modify the enzyme complex for improved efficiency.”

What the scientists found in their simulations – a “virtual microscope” that let them zoom in on previously invisible details -- is that initially the binding part of the enzyme moves freely and randomly across the cellulose surface, searching for a broken cellulose chain. When it encounters an available chain, the cellulose itself seems to prompt a change in the shape of the enzyme complex so that it can straddle the broken end of the cellulose chain. This gives the enzyme a crucial foothold to begin the process of digesting or “unzipping” the cellulose into sugar molecules.

To the scientists, the simulation is like a stop-motion film of a baseball pitcher throwing a curveball. In real-life the process occurs far too quickly to evaluate visually, but by using the supercomputer simulations to break the throw down into a step-by-step process, the scientists can see the precise details of the role of velocity, trajectory, movement, and arm angle. To undertake the large-scale simulations, the researchers used the CHARMM (Chemistry at HARvard Molecular Mechanics) suite of modeling software.

According to the researchers, an accurate understanding of the key molecular events required the simulations to run for some six million time steps over 12 nanoseconds (a nanosecond is one billionth of a second) in order to capture enough of the motion and shape changes of the enzyme as it interacted with the cellulose surface. This is an extremely long time in molecular terms, and the computation-hungry simulations ran for some 80,000 processor-hours running on SDSC’s DataStar supercomputer.

Also participating in the study were Michael Crowley, William Adney, and Michael Himmel of the Department of Energy’s National Renewable Energy Laboratory (NREL); James Matthews and John Brady of Cornell University; Linghao Zhong of Penn State University; as well as Ross Walker, and Giridhar Chukkapalli of SDSC.

The research was partially funded by the Department of Energy’s Biomass Program and the National Science Foundation. The results were reported in the April 12 online edition of the Protein Engineering, Design and Selection journal.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Meeting The Ethanol Challenge: Scientists Use Supercomputer To Target Cellulose Bottleneck." ScienceDaily. ScienceDaily, 25 April 2007. <www.sciencedaily.com/releases/2007/04/070424155550.htm>.
University of California - San Diego. (2007, April 25). Meeting The Ethanol Challenge: Scientists Use Supercomputer To Target Cellulose Bottleneck. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2007/04/070424155550.htm
University of California - San Diego. "Meeting The Ethanol Challenge: Scientists Use Supercomputer To Target Cellulose Bottleneck." ScienceDaily. www.sciencedaily.com/releases/2007/04/070424155550.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
After Sony Hack, What's Next?

After Sony Hack, What's Next?

Reuters - US Online Video (Dec. 19, 2014) The hacking attack on Sony Pictures has U.S. government officials weighing their response to the cyber-attack. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
How 2014 Shaped The Future Of The Internet

How 2014 Shaped The Future Of The Internet

Newsy (Dec. 18, 2014) It has been a long, busy year for Net Neutrality. The stage is set for an expected landmark FCC decision sometime in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins