Featured Research

from universities, journals, and other organizations

Targeting Sugar On Blood Vessels May Inhibit Cancer Growth

Date:
May 8, 2007
Source:
University of California - San Diego
Summary:
In a study that could point to novel therapies to prevent cancer spread, or metastasis, researchers have targeted a sugar that supports blood vessel growth in the tumor.

Altered tumor vasculature in endothial-targeted Ndst1 knockout mice.
Credit: University of California, San Diego

In a study that could point to novel therapies to prevent cancer spread, or metastasis, researchers at the University of California, San Diego (UCSD) School of Medicine have targeted a sugar that supports blood vessel growth in the tumor.

Lung cancer is the most common cause of cancer death and an area where novel therapies to block metastasis are desperately needed, according to first author Mark M. Fuster, M.D., assistant professor in the Division of Pulmonary and Critical Care Medicine in UCSD's Department of Medicine. Solid tumors need a network of blood vessels, or vasculature, in order to grow, and this vasculature drives metastasis. The research team, led by the paper's principal investigator Jeffrey D. Esko, Ph.D., professor of Cellular and Molecular Medicine at UCSD, showed that modifying the action of heparan sulfate uniquely impacted the tumor vasculature, and in doing so, altered the growth rate of tumors prepared from lung carcinoma cells in the mice.

"We theorized that by targeting the sugar, heparan sulfate, we could affect angiogenesis, which is the formation of new blood vessels," said Fuster. "In cancer, angiogenesis sustains growth as well as metastasis of tumors. An important finding was that, not only could we inhibit the growth of tumors in these mice, but that other systems that rely on endothelial growth, such as the reproductive system and wound healing, remained robust."

Studying mouse models with a genetic alteration in an important sugar-modifying enzyme (Ndst1), the researchers saw a marked decrease in the growth of experimental carcinomas. The Ndst1 enzyme is responsible for modifying the molecular structure of a sugar called heparan sulfate. In endothelial cells, this sugar facilitates the action of several important vascular growth factors that support angiogenesis.

An antibody drug called Avastin, produced by Genentech, has been shown to block a major pro-angiogenesis molecule called vascular endothelial growth factor (VEGF), thus inhibiting the growth of vasculature. The drug has been used along with chemotherapy in humans to successfully inhibit the growth of tumors in colon and lung cancers.

"If novel drugs can be developed to target tumor heparan sulfate, we might be able to make a leap in cancer-fighting therapies, because several molecules critical to tumor endothelial growth also bind to heparan sulfate," Fuster said. "Altering this binding would allow for suppression of a broader array of the tumor 'fuels' for angiogenesis, without a major effect on normal vascular function."

The researchers hope to develop novel therapies by inhibiting endothelial heparan sulfate in the tumor environment. An example would be developing small-molecule inhibitors of Ndst1. By affecting a broad array of molecules -- such as VEGF, fibroblast growth factor, platelet-derived growth factor, or others that impact angiogenesis in a variety of carcinomas -- this therapy could be used to inhibit cancer growth and metastasis with fewer side effects.

These findings will be published in the May 7 online issue of Journal of Cell Biology. Additional contributors to the paper include Lianchun Wang, Janice Castagnola, Krisanavane Reddi, Manuela Shuksz and Joseph R. Bishop, of UCSD's Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center; Lyudmila Sikora and P. Sriaramarao from the Division of Vascular Biology at the La Jolla Institute for Molecular Medicine; Phillip H.A. Lee, Katherine Radek and Richard L. Gallo, M.D., Ph.D., of the Division of Dermatology, San Diego VA Medical Center and UCSD. The research was funded in part by grants from the National Institutes of Health and the U.S. Department of Veterans Affairs.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Targeting Sugar On Blood Vessels May Inhibit Cancer Growth." ScienceDaily. ScienceDaily, 8 May 2007. <www.sciencedaily.com/releases/2007/05/070507090408.htm>.
University of California - San Diego. (2007, May 8). Targeting Sugar On Blood Vessels May Inhibit Cancer Growth. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2007/05/070507090408.htm
University of California - San Diego. "Targeting Sugar On Blood Vessels May Inhibit Cancer Growth." ScienceDaily. www.sciencedaily.com/releases/2007/05/070507090408.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins