Featured Research

from universities, journals, and other organizations

Novel Sugar-to-hydrogen Technology Promises Transportation Fuel Independence

Date:
May 24, 2007
Source:
Virginia Tech
Summary:
The hydrogen economy is not a futuristic concept. The U.S. Department of Energy calls for competitive ethanol from plant sources by 2012. Researchers have just proposed using polysaccharides, or sugary carbohydrates, from biomass to directly produce low-cost hydrogen for the new hydrogen economy. The vision is for the ingredients to be mixed in the fuel tank of your car, for instance, to power a fuel cell.

"We need a simple way to store and carry hydrogen energy and a simple process to produce hydrogen," said Y.-H. Percival Zhang, assistant professor of biological systems engineering at Virginia Tech.
Credit: Image courtesy of Virginia Tech

The hydrogen economy is not a futuristic concept. The U.S. Department of Energy's 2006 Advance Energy Initiative calls for competitive ethanol from plant sources by 2012 and a good selection of hydrogen-powered fuel cell vehicles by 2020.

Related Articles


Researchers at Virginia Tech, Oak Ridge National Laboratory (ORNL), and the University of Georgia propose using polysaccharides, or sugary carbohydrates, from biomass to directly produce low-cost hydrogen for the new hydrogen economy.

According to the DOE, advances are needed in four areas to make hydrogen fuel an economical reality for transportation -- production, storage, distribution, and fuel cells. Most industrial hydrogen currently comes from natural gas, which has become expensive. Storing and moving the gas, whatever its source, is costly and cumbersome, and even dangerous. And there is little infrastructure for refueling a vehicle.

"We need a simple way to store and carry hydrogen energy and a simple process to produce hydrogen," said Y.-H. Percival Zhang, assistant professor of biological systems engineering at Virginia Tech.

Using synthetic biology approaches, Zhang and colleagues Barbara R. Evans and Jonathan R. Mielenz of ORNL and Robert C. Hopkins and Michael W.W. Adams of the University of Georgia are using a combination of 13 enzymes never found together in nature to completely convert polysaccharides (C6H10O5) and water into hydrogen when and where that form of energy is needed. This "synthetic enzymatic pathway"research appears in the May 23 issue of PLoS ONE.

Polysaccharides like starch and cellulose are used by plants for energy storage and building blocks and are very stable until exposed to enzymes. Just add enzymes to a mixture of starch and water and "the enzymes use the energy in the starch to break up water into only carbon dioxide and hydrogen,"Zhang said.

A membrane bleeds off the carbon dioxide and the hydrogen is used by the fuel cell to create electricity. Water, a product of that fuel cell process, will be recycled for the starch-water reactor. Laboratory tests confirm that it all takes place at low temperature -- about 86 degrees F -- and atmospheric pressure.

The vision is for the ingredients to be mixed in the fuel tank of your car, for instance. A car with an approximately 12-gallon tank could hold 27 kilograms (kg) of starch, which is the equivalent of 4 kg of hydrogen. The range would be more than 300 miles, Zhang estimates. One kg of starch will produce the same energy output as 1.12 kg (0.38 gallons) of gasoline.

Since hydrogen is gaseous, hydrogen storage is the largest obstacle to large-scale use of hydrogen fuel. The Department of Energy's long-term goal for hydrogen storage was 12 mass percent, or 0.12 kg of hydrogen per one kg of container or storage material, but such technology is not available, said Zhang. Using polysaccharides as the hydrogen storage carrier, the research team achieved hydrogen storage capacity as high as 14.8 mass percent, they report in the PLOS article.

The idea began as a theory. The research was based on Zhang's previous work pertaining to cellulosic ethanol production and the ORNL and University of Georgia researchers' work with enzymatic hydrogen production. UGA Distinguished Professor Adams is co-author of the first enzymatic hydrogen paper in Nature Biotechnology in 1996. The researchers were certain they could put the processes together in one pot. They tested the theory using Oak Ridge's hydrogen detectors and documented that hydrogen is produced as they predicted.

Mielenz, who heads the Bioconversion Group in ORNL's Biosciences Division, attributed the successful research to a unique collaborative working relationship between scientists, lab divisions, and universities.

"Pairing our biomass conversion capabilities with facilities for studying renewable hydrogen production in the lab's Chemical Sciences Division was a key to this project,"Mielenz said. "This also shows the value of partnerships with universities such as Virginia Tech and the University of Georgia."

It is a new process that aims to release hydrogen from water and carbohydrate by using multiple enzymes as a catalyst, Zhang said. "In nature, most hydrogen is produced from anaerobic fermentation. But hydrogen, along with acetic acid, is a co-product and the hydrogen yield is pretty low -- only four molecules per molecule of glucose. In our process, hydrogen is the main product and hydrogen yields are three-times higher, and the likely production costs are low -- about $1 per pound of hydrogen. "

Over the years, many substances have been proposed as "hydrogen carriers,"such as methanol, ethanol, hydrocarbons, or ammonia -- all of which require special storage and distribution. Also, the thermochemical reforming systems require high temperatures and are complicated and bulky. Starch, on the other hand, can be distributed by grocery stores, Zhang points out.

"So it is environmentally friendly, energy efficient, requires no special infrastructure, and is extremely safe. We have killed three birds with one stone,"he said. "We have hydrogen production with a mild reaction and low cost. We have hydrogen storage and transport in the form of starch or syrups. And no special infrastructure is needed."

"The next R&D step will be to increase reaction rates and reduce enzyme costs," Zhang said. "We envision that in the future we will drive vehicles powered by carbohydrate, or energy stored in solid carbohydrate form, with hydrogen production from carbohydrate and water, and electricity production via hydrogen-fuel cells.

"What is more important, the energy conversion efficiency from the sugar-hydrogen-fuel cell system is extremely high -- greater than three times higher than a sugar-ethanol-internal combustion engine,"Zhang said. "It means that if about 30 percent of transportation fuel can be replaced by ethanol from biomass as the DOE proposed, the same amount of biomass will be sufficient to provide 100 percent of vehicle transportation fuel through this technology."

In addition, the use of carbohydrates from biomass as transportation fuels will produce zero net carbon dioxide emissions and bring benefits to national energy security and the economy, Zhang said.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Novel Sugar-to-hydrogen Technology Promises Transportation Fuel Independence." ScienceDaily. ScienceDaily, 24 May 2007. <www.sciencedaily.com/releases/2007/05/070522210922.htm>.
Virginia Tech. (2007, May 24). Novel Sugar-to-hydrogen Technology Promises Transportation Fuel Independence. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2007/05/070522210922.htm
Virginia Tech. "Novel Sugar-to-hydrogen Technology Promises Transportation Fuel Independence." ScienceDaily. www.sciencedaily.com/releases/2007/05/070522210922.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins