Featured Research

from universities, journals, and other organizations

Modeling Cell Division: How A Cell Interacts With Its Microenvironment

Date:
June 20, 2007
Source:
Institut Curie
Summary:
Division is a key step in the life of cells and involves complex dynamic interplay between a large number of molecular components. Biologists and theoretical physicists have now devised a theoretical model of cell division of great predictive value.

Cells take orders from their environment By using different micropatterns (in red), the orientation of cell division can be observed (line below, with chromosomes [blue] and the fibers [green] linking cell body and the micropattern). The cell responds appropriately to its environment. By measuring the orientation of many cell divisions, it was possible to formulate a mechanical model of the positioning of the mitotic spindle, an ephemeral cellular structure present only during cell division.
Credit: Copyright Manuel Théry/Institut Curie

Division is a key step in the life of cells and involves complex dynamic interplay between a large number of molecular components. CNRS biologists at the Institut Curie and theoretical physicists of the Max Planck Institute in Germany have devised a theoretical model of cell division of great predictive value.

They have used microtechnology to study individual cell divisions as their environment changes. Based on observations of a great many cells, the researchers have devised a theoretical model that predicts the orientation of cell division. The model, which is reported in the 24 May 2007 issue of Nature, is based on calculation of the forces exerted on the mitotic spindle within the cell, and describes how cells divide normally and what happens when something goes awry. The model shows that certain configurations of the microenvironment induce asymmetric cell division. Once applied to tissues, the model will enable diagnoses to be refined, by describing the abnormal division of diseased cells.

Division is an essential stage in the life of all cells: it is involved in growth of the organism, repair of wounds or infections, and regular renewal of cells. At any given moment, 250 000 million cells are dividing in our bodies. Each of these cells has a very precisely defined location, which is essential to maintaining the shape of tissues and organs. Constraints imposed by other cells—the environment—influence the division and positioning of daughter cells.

Manuel Théry in the CNRS team of Michel Bornens has developed an original approach which he is now pursuing at the Commissariat à l’Energie Atomique in Grenoble(1), to study how a cell’s surroundings affect its division. A method called micropatterning is used to modulate the cell’s environment and observe its response, by imposing a given contour on the cell while giving it different adhesion zones, as if it were surrounded by other cells. This reproduces the spatial information that a cell is likely to receive within its tissue.

The CNRS team of Michel Bornens at the Institut Curie and the theoretical physics group of Frank Jülicher, Director of the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany, have joined forces to use this microtechnology to model cell division. They have measured the orientations of thousands of cell divisions and used their findings to propose a mechanical model of the orientation of the mitotic spindle, an ephemeral cellular structure present only during cell division, based on the activation of motor molecules at the cell surface.

These motors, which are found where the cell contacts its microenvironment, pull on the astral microtubules and orient the spindle. This mechanism aligns the cell’s plane of division with the geometry of its environment.

The researchers have also shown that certain spatial configurations of the cellular microenvironment induce asymmetric orientations of the spindle. Whether or not cell division is symmetric is primordial in the fate of the resulting daughter cells. These results could therefore have interesting applications in the control of the symmetric or asymmetric divisions of stem cells in vitro.

Only microtechnologies such as the micropatterning technique can be used to study the individual “sensitivity” of cells and to derive laws to predict the distribution of cell division orientations, without knowing the details of the molecular mechanisms involved. These laws apply to an embryo or to an organism that is undergoing renewal. In time it may prove possible to describe the mechanics brought into play during development. This may not only result from but also actively regulates the genetics underpinning tissue growth.

It is now possible to quantify precisely a cell’s capacity to respond to its environment, and to identify cells that behave “abnormally”, like cancer cells. Once this model can be applied to tissues, physicians will be able to refine their diagnosis by gathering information on the way division is perturbed in diseased cells.

This work illustrates the value of exchanging skills and know-how, and shows how the bringing together of researchers from different backgrounds, which has long been central to the Institut Curie’s approach, generates a dynamic environment conducive to creativity. In particular, one of the great originalities of the Institut Curie has been to develop collaborations between physicists and biologists. This interface affords another vision of the world of the living cell, and promises much in our understanding of the complexity of living organisms.

Note: (1) Manuel Théry is currently at the Laboratoire Biopuces, in the Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV) of the Commissariat à l’ Energie Atomique in Grenoble.


Story Source:

The above story is based on materials provided by Institut Curie. Note: Materials may be edited for content and length.


Cite This Page:

Institut Curie. "Modeling Cell Division: How A Cell Interacts With Its Microenvironment." ScienceDaily. ScienceDaily, 20 June 2007. <www.sciencedaily.com/releases/2007/06/070619193252.htm>.
Institut Curie. (2007, June 20). Modeling Cell Division: How A Cell Interacts With Its Microenvironment. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2007/06/070619193252.htm
Institut Curie. "Modeling Cell Division: How A Cell Interacts With Its Microenvironment." ScienceDaily. www.sciencedaily.com/releases/2007/06/070619193252.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) — Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) — Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) — At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Raw: Otters Enjoy Water Slides at Japan Zoo

Raw: Otters Enjoy Water Slides at Japan Zoo

AP (July 30, 2014) — River otters were hitting the water slides to beat the summer heatwave on Wednesday at Ichikawa City's Zoological and Botanical Garden. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins