Featured Research

from universities, journals, and other organizations

Surprising Origin Of Cell's Internal Highways

Date:
June 21, 2007
Source:
Vanderbilt University Medical Center
Summary:
Scientists have long thought that microtubules, part of the microscopic scaffolding that the cell uses to move things around in order to hold its shape and divide, originated from a tiny structure near the nucleus, called the centrosome. Researchers now report a surprising new origin for these cellular "highways" -- the Golgi apparatus.

Using live-cell imaging, researchers have found that microtubules can originate from the Golgi (blue tracks) in addition to their traditional nucleation point at the centrosome (pink tracks).
Credit: Irina Kaverina

Scientists have long thought that microtubules, part of the microscopic scaffolding that the cell uses to move things around in order to hold its shape and divide, originated from a tiny structure near the nucleus, called the centrosome.

Now, researchers at Vanderbilt University Medical Center reveal a surprising new origin for these cellular "highways." In the June issue of Developmental Cell, Irina Kaverina, Ph.D., and colleagues report that the Golgi apparatus -- a stack of pancake-shaped compartments that sorts and ships proteins out to their cellular destinations -- is the source of a particular subset of these microscopic fibers. The findings point to a novel cellular mechanism that may guide cell movement and possibly cancer cell invasion.

Microtubules are the largest of the three main types of filaments that make up the cytoskeleton -- a web of microscopic fibers inside the cell.

They form when two globular proteins, alpha- and beta-tubulin, polymerize into long chains, which then assemble into long, hollow tubes. In order to gain a foothold, nascent microtubule "seeds" must be anchored at a structure near the cell's nucleus called the centrosome or microtubule-organizing center (MTOC).

From the MTOC, the growing microtubules launch out in all directions to the cell's periphery. Their rapid assembly and disassembly helps transport proteins throughout the cell and generate polarized (directional) signal distribution that causes cells to move.

While microtubules in some specialized cells can originate from non-centrosomal structures, the centrosome has been considered the main origination point for microtubule "nucleation" in most cells. Until now.

"I've seen that there are lots of microtubules not attached to the centrosome," said Kaverina, assistant professor of Cell and Developmental Biology and senior author on the paper. "So I am trying to look at their origins."

The Golgi has been suspected to function as an MTOC, explained Kaverina. However, conclusively demonstrating this was impossible before the advent of live-cell imaging techniques that could reveal the true origins of these structures.

"The Golgi apparatus is very close to the centrosome," said Kaverina. "So if you're not looking at it precisely, it is hard to distinguish between the centrosome and Golgi."

To get a close look, Kaverina and colleagues tagged the growing ("plus") ends of microtubules in human retinal epithelial cells with a fluorescent molecule, videotaped their growth and carefully followed the tracks back to their origin.

"We show that not only the centrosome, but the Golgi also makes microtubules," Kaverina said. "And unlike centrosomal microtubules, which are radial and symmetric, these microtubules are directional."

They found that microtubules originating at the Golgi are directed toward the cell "front," or the leading edge, of motile cells. Since such an orientation is needed for directional migration, Kaverina hypothesizes that this subset of microtubules may influence cell motility by facilitating the transport of proteins needed for movement to the cell front.

"This new microtubule subset that we discovered directly connects the Golgi to the cell front, so it would be very logical if these microtubules act as €˜tracks' for this delivery," she said.

In addition to identifying this novel site of microtubule nucleation, Kaverina and colleagues also examined the molecular mechanisms governing the process. They found that proteins normally associated with the plus ends of microtubules, called CLASPs, localize to a specific compartment of the Golgi (the Trans Golgi Network) and stabilize the microtubule "seeds" at the Golgi.

Golgi-originating microtubules could also be an important factor influencing how cancer cells invade distant tissues.

Because microtubules play a central role in cell division, cancer drugs like colchicine, vincristine and paclitaxel (Taxol) can block cell division by altering microtubule dynamics.

"Many classic chemotherapy strategies affect microtubules, although it's not quite clear how these drugs influence cancer cells differently than normal cells," said Kaverina. "Both microtubule regulation of proliferation and microtubule regulation of migration and invasion probably contribute to the therapeutic effects."

Therefore, further study of this new subset of microtubules might offer insight into how the invasion of cancer cells into surrounding tissues could be halted.

Contributing authors included Andrey Efimov, Ph.D., Nadia Efimova, and Paul Miller from Vanderbilt, and colleagues from the Austrian Academy of Sciences, New York State Department of Health, University of Melbourne (Australia), Erasmus Medical Center (Netherlands), University of Porto (Portugal), and Scripps Research Institute.


Story Source:

The above story is based on materials provided by Vanderbilt University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University Medical Center. "Surprising Origin Of Cell's Internal Highways." ScienceDaily. ScienceDaily, 21 June 2007. <www.sciencedaily.com/releases/2007/06/070620154929.htm>.
Vanderbilt University Medical Center. (2007, June 21). Surprising Origin Of Cell's Internal Highways. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2007/06/070620154929.htm
Vanderbilt University Medical Center. "Surprising Origin Of Cell's Internal Highways." ScienceDaily. www.sciencedaily.com/releases/2007/06/070620154929.htm (accessed September 23, 2014).

Share This



More Plants & Animals News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Ice Age Wooly Mammoth Remains for Sale

Raw: Ice Age Wooly Mammoth Remains for Sale

AP (Sep. 23, 2014) A rare, well-preserved skeleton of a woolly mammoth is going on sale at Summers Place Auctions hope the 11.5-foot tall, almost intact specimen will fetch between $245,000 to $409,000. (Sept. 23) Video provided by AP
Powered by NewsLook.com
Fox Bites Conn. Student And School Staffers In Rare Attack

Fox Bites Conn. Student And School Staffers In Rare Attack

Newsy (Sep. 23, 2014) A fox attacked a second-grade boy at a Connecticut elementary school Monday. It also attacked two school staff members and a woman and her dog. Video provided by Newsy
Powered by NewsLook.com
Will Living Glue Be A Thing?

Will Living Glue Be A Thing?

Newsy (Sep. 23, 2014) Using proteins derived from mussels, engineers at MIT have made a supersticky underwater adhesive. They're now looking to make "living glue." Video provided by Newsy
Powered by NewsLook.com
Raw: Tiger Kills Man at India Zoo

Raw: Tiger Kills Man at India Zoo

AP (Sep. 23, 2014) A white tiger killed a young man who climbed over a fence at the New Delhi zoo and jumped into the animal's enclosure on Tuesday, a spokesman said. (Sept. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins