Featured Research

from universities, journals, and other organizations

Bioengineers Devise 'Dimmer Swith' To Regulate Gene Expression In Mammal Cells

Date:
July 29, 2007
Source:
Boston University
Summary:
Biomedical engineers have created a genetic dimmer switch that can be used to turn on, shut off, or partially activate a gene's function. This switch helps advance the field of synthetic biology, which rests on the premise that complex biological systems can be built by arranging components or standard parts, as an electrician would to build an electric light switch.

Three Boston University biomedical engineers have created a genetic dimmer switch that can be used to turn on, shut off, or partially activate a gene's function. Professor James Collins, Professor Charles Cantor and doctoral candidate Tara Deans invented the switch, which can be tuned to produce large or small quantities of protein, or none at all.

This switch helps advance the field of synthetic biology, which rests on the premise that complex biological systems can be built by arranging components or standard parts, as an electrician would to build an electric light switch. Much work in the field to date uses bacteria or yeast, but the Boston University team used more complex mammalian cells, from hamsters and mice. The switch has several new design features that extend possible applications into areas from basic research to gene therapy.

"There are a number of technologies available to regulate gene expression, but they each come with limitations," said Collins. "One of the central problems is you can't get a really tight 'off' state."

Even when genetic switches are turned off, a trickle of the protein that is meant to be repressed still gets made. Some genetic switches get around this by entirely snipping out a gene to stop production of a specific protein, but this approach is irreversible.

To overcome these challenges, "Tara came up with a design that really combined two different technologies to repress or shut down gene expression," Collins added. "We said, okay, we've got these two technologies, both that give a pretty good 'off,' why not try to combine them together to get a really clear and strong 'off,'" said Collins.

The first strategy, a repressor protein, sits on DNA like a roadblock, preventing any gene product -- messenger RNA (mRNA) -- from being made. If any mRNA gets past this repressor, the second technique, interfering RNA (RNAi) attaches to the functional mRNA, rendering it useless. The cell cannot turn it into protein.

"I was delighted to see that when the two systems are coupled, it is possible to completely turn a gene's function off," said Deans.

This switch is also reversible and tunable. By adding a chemical -- Isopropyl--thiogalactopyranoside -- the repressor components are blocked and the gene turns on again. The gene's activity can be tuned up or down by adjusting the amount of this chemical.

The researchers demonstrated the strength of their "off" switch by hooking it up to the gene for diphtheria toxin, then inserting it into cells. One molecule of diphtheria toxin can kill a cell, but with the genetic switch turned off, the cells survived for weeks. When the researchers flipped the switch, toxin production was triggered and the cell died.They also showcased the switch's capability for delicately tuning gene expression, by installing it alongside a gene that leads to apoptosis, programmed cell death, once a certain threshold concentration of the gene's product is reached. They gradually increased the gene's activity until they met and passed this threshold.

This tuning feature is important, said Deans, because "many diseases are not a result of missing a gene, but rather a result of too much or too little expression. With the ability to tune the level of gene expression in our switch, we could explore threshold responses and how these result in disease phenotypes."

The switch may also hold promise for therapeutic applications. "It gives a really nice regulator scheme for cell and gene therapy," said Collins. "I think in the coming decades we'll increasingly see these therapies being introduced as part of routine medical practice."

The research detailing their new switch, "A Tunable Genetic Switch Based on RNAi and Repressor Proteins for Regulating Gene Expression in Mammalian Cells," appears in the July 27 issue of Cell.


Story Source:

The above story is based on materials provided by Boston University. Note: Materials may be edited for content and length.


Cite This Page:

Boston University. "Bioengineers Devise 'Dimmer Swith' To Regulate Gene Expression In Mammal Cells." ScienceDaily. ScienceDaily, 29 July 2007. <www.sciencedaily.com/releases/2007/07/070726150855.htm>.
Boston University. (2007, July 29). Bioengineers Devise 'Dimmer Swith' To Regulate Gene Expression In Mammal Cells. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2007/07/070726150855.htm
Boston University. "Bioengineers Devise 'Dimmer Swith' To Regulate Gene Expression In Mammal Cells." ScienceDaily. www.sciencedaily.com/releases/2007/07/070726150855.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins