Featured Research

from universities, journals, and other organizations

Study Reveals Molecular Changes When Asian Soybean Rust Infects

Date:
August 8, 2007
Source:
Iowa State University
Summary:
An extensive analysis of molecular changes that occur while a plant is being infected by the Asian soybean rust fungus reveals new information that could lead to a soybean variety with broad-spectrum resistance, say the Iowa State University scientists who led the research. The highly infectious Asian soybean rust can devastate a crop. In countries where it is common, the fungus can wipe out 80 percent of yields, depending on environmental conditions and fungicide use.

Spores of a Brazilian isolate of Asian soybean rust were used in an Iowa State University study of the gene activity during the first week of infection by the fungus.
Credit: Iowa State University

An extensive analysis of molecular changes that occur while a plant is being infected by the Asian soybean rust fungus reveals new information that could lead to a soybean variety with broad-spectrum resistance, say the Iowa State University scientists who led the research.

Related Articles


The highly infectious Asian soybean rust can devastate a crop. In countries where it is common, the fungus can wipe out 80 percent of yields, depending on environmental conditions and fungicide use. The disease was first confirmed in the United States in 2004, but has not yet spread into the major soybean-producing states during the growing season. In 2006, the value of the U.S. soybean crop exceeded $19.7 billion.

Iowa State plant pathologists Thomas Baum, Steve Whitham and Martijn van de Mortel led the three-year research project, which is the largest molecular study of the interaction of soybean and Asian soybean rust. It was funded by the Plant Sciences Institute at Iowa State.

The experiment took place in a greenhouse at Embrapa Soja, the leading national agricultural research institution in Brazil where the fungus is endemic. Brazilian researchers Alvaro Almeida and Ricardo Abdelnoor directed the collaborative experiment.

The researchers sprayed Asian soybean rust spores on two soybean varieties — a highly susceptible variety and a resistant one in which the disease progresses slowly. Samples were taken every six hours for the first 24 hours and at greater increments of time throughout the next seven days.

Then the researchers returned to Iowa State with genetic material that provided a snap shot of the level of gene expression at the time the plants were sampled. At the university’s GeneChip Facility, they profiled the gene expression of more than 30,000 soybean genes in each sample. To determine which of the soybean genes changed expression significantly in response to the fungus, the group worked with Dan Nettleton, Laurence H. Baker Endowed Chair in biological statistics, and doctoral student Justin Recknor.

The analyses showed that both varieties immediately responded to the fungus as indicated by significant changes in gene expression levels. Then something unexpected happened.

“Twenty-four hours into the infection, gene expression returned to the baseline — the plant’s response to the rust pathogen essentially turned off,” Whitham said.

There was a lull in which gene activity calmed down for about 48 hours. Then, the activity peaked again as another response was mounted — first in the variety with resistance to the disease; a day or two later in the highly susceptible variety.

“It looked like this second burst of gene activity in the resistant plants was the real resistance response,” Whitham said.

It’s likely the fungus produced something the plant recognized as foreign. The fact that the response happened earlier in the variety with some resistance indicated that these genes may be involved in regulating or affecting soybean defense mechanisms.

The event pointed the scientists to genes involved in defending the soybean plant, narrowing the field from 37,500 genes to just a few hundred. Clues about how these genes act to limit Asian soybean rust growth were provided by U.S. Department of Agriculture scientist Michelle Graham. She developed labels that describe what each of the 37,500 genes does or is predicted to do.

Now the researchers are studying those genes experimentally to understand their roles in limiting the growth of the pathogen. The additional work, funded by the Iowa Soybean Association, is being done at the USDA/Agriculture Research Service’s high-containment facility at Fort Detrick, Md.

The data generated by the research team is a significant genomic resource available online for researchers worldwide to access. Despite the value of this fundamental research in providing a better understanding of Asian soybean rust, the development of a soybean variety resistant to the fungus is still years away, Baum said.

“It’s not something that can be solved overnight, but it will work out,” Baum said. “You have to put in the time, resources and manpower to get a grip on the biology. And then you can start doing other approaches to control the disease. But first we need to understand what we’re trying to control.”

These findings are published in the August edition of the journal Molecular Plant-Microbe Interactions.


Story Source:

The above story is based on materials provided by Iowa State University. Note: Materials may be edited for content and length.


Cite This Page:

Iowa State University. "Study Reveals Molecular Changes When Asian Soybean Rust Infects." ScienceDaily. ScienceDaily, 8 August 2007. <www.sciencedaily.com/releases/2007/08/070803135139.htm>.
Iowa State University. (2007, August 8). Study Reveals Molecular Changes When Asian Soybean Rust Infects. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2007/08/070803135139.htm
Iowa State University. "Study Reveals Molecular Changes When Asian Soybean Rust Infects." ScienceDaily. www.sciencedaily.com/releases/2007/08/070803135139.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins