Featured Research

from universities, journals, and other organizations

Birds Learn To Fly With A Little Help From Their Ancestors

Date:
August 20, 2007
Source:
University of Sheffield
Summary:
A researcher has discovered that the reason birds learn to fly so easily is because latent memories may have been left behind by their ancestors. It is widely known that birds learn to fly through practice, gradually refining their innate ability into a finely tuned skill. However, according to a psychologist these skills may be easy to refine because of a genetically specified latent memory for flying.

Birds learn to fly through practice, gradually refining their innate ability into a finely tuned skill, which researchers think may be easy to refine because of a genetically specified latent memory for flying.
Credit: iStockphoto/Sue McDonald

A researcher at the University of Sheffield has discovered that the reason birds learn to fly so easily is because latent memories may have been left behind by their ancestors.

It is widely known that birds learn to fly through practice, gradually refining their innate ability into a finely tuned skill. However, according to Dr Jim Stone from the University of Sheffield´s Department of Psychology, these skills may be easy to refine because of a genetically specified latent memory for flying.

Dr Stone used simple models of brains called artificial neural networks and computer simulations to test his theory. He discovered that learning in previous generations indirectly induces the formation of a latent memory in the current generation and therefore decreases the amount of learning required. These effects are especially pronounced if there is a large biological 'fitness cost' to learning, where biological fitness is measured in terms of the number of offspring each individual has.

The beneficial effects of learning also depend on the unusual form of information storage in neural networks. Unlike computers, which store each item of information in a specific location in the computer's memory chip, neural networks store each item distributed over many neuronal connections. If information is stored in this way then evolution is accelerated, explaining how complex motor skills, such as nest building and hunting skills, are acquired by a combination of innate ability and learning over many generations.

Dr Stone said: "This new theory has its roots in ideas proposed by James Baldwin in 1896, who made the counter-intuitive argument that learning within each generation could guide evolution of innate behaviour over future generations. Baldwin was right, but in ways more subtle than he could have imagined because concepts such as artificial neural networks and distributed representations were not known in his time."

Results are reported in: Stone JV, "Distributed Representations Accelerate Evolution of Adaptive Behaviours", PLoS Computational Biology, 2007 (in press).


Story Source:

The above story is based on materials provided by University of Sheffield. Note: Materials may be edited for content and length.


Cite This Page:

University of Sheffield. "Birds Learn To Fly With A Little Help From Their Ancestors." ScienceDaily. ScienceDaily, 20 August 2007. <www.sciencedaily.com/releases/2007/08/070814100515.htm>.
University of Sheffield. (2007, August 20). Birds Learn To Fly With A Little Help From Their Ancestors. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2007/08/070814100515.htm
University of Sheffield. "Birds Learn To Fly With A Little Help From Their Ancestors." ScienceDaily. www.sciencedaily.com/releases/2007/08/070814100515.htm (accessed October 23, 2014).

Share This



More Plants & Animals News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Working Mother DIY: Pumpkin Pom-Pom

Working Mother DIY: Pumpkin Pom-Pom

Working Mother (Oct. 22, 2014) — How to make a pumpkin pom-pom. Video provided by Working Mother
Powered by NewsLook.com
Goofy Dinosaur Blends Barney and Jar Jar Binks

Goofy Dinosaur Blends Barney and Jar Jar Binks

AP (Oct. 22, 2014) — A collection of dinosaur bones reveal a creature that is far more weird and goofy-looking than scientists originally thought when they found just the arm bones nearly 50 years ago, according to a new report in the journal Nature. (Oct. 22) Video provided by AP
Powered by NewsLook.com
San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

Reuters - Light News Video Online (Oct. 22, 2014) — The pair of rare white northern rhinos bring hope for their species as only six remain in the world. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Bear Cub Strolls Through Oregon Drug Store

Raw: Bear Cub Strolls Through Oregon Drug Store

AP (Oct. 22, 2014) — Shoppers at an Oregon drug store were surprised by a bear cub scurrying down the aisles this past weekend. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins