Featured Research

from universities, journals, and other organizations

Key To Longer Life (in Flies) Lies In Just 14 Brain Cells

Date:
September 21, 2007
Source:
Brown University
Summary:
Fruit flies live significantly longer when the activity of the protein p53 is reduced in just 14 insulin-producing cells in their brains, new research shows. The results put scientists one step closer to understanding caloric restriction, a biochemical process proven to slow aging.

Two years ago, Brown University researchers discovered something startling: Decrease the activity of the cancer-suppressing protein p53 and you can make fruit flies live significantly longer.

Related Articles


Now the same team reports an intriguing follow-up finding. The p53 protein, they found, may work its lifespan-extending magic in only 14 insulin-producing cells in the fly brain.

"It's quite surprising," said Johannes Bauer, a postdoctoral research fellow at Brown. "In the fruit fly brain, there are tens of thousands of cells. But we found that it takes a reduction of p53 activity in only 14 of those brain cells to extend lifespan. It was like finding a needle in the haystack -- a very small needle at that."

Bauer is the lead author of the research report, published in the Proceedings of the National Academy of Sciences. Brown biology professor Stephen Helfand, senior scientist on the project, will discuss the findings in his keynote address at the Gordon Research Conferences on the Biology of Aging, to be held Sept. 23-28, 2007, in Les Diablerets, Switzerland.

P53 is sometimes called "guardian of the genome" for defending cells against DNA damage. Not enough of the protein can cause cancer; too much, however, can shorten lifespan. But in 2005, Helfand and his lab showed that a targeted decrease of p53 in fruit flies -- a decrease specifically in their brain cells -- allowed flies to live healthy lives that were as much as 58 percent longer.

But how, exactly, does p53 do its work in the brain" To find out, Bauer spent a year conducting painstaking experiments. He'd take a batch of young flies, each genetically altered to reduce p53 activity in a small portion of their nervous systems, and watch the flies age. Time and again, the flies lived for about two months -- the average lifespan for these insects.

But when Bauer manipulated a cluster of 14 insulin-producing cells in their brains, the flies lived about 15 to 20 percent longer. Bauer ran the experiment again and again -- and got the same result.

Bauer and Helfand then wanted to know if this was caloric restriction at work. Studies have shown that low-calorie diets can significantly increase the lifespan of flies, worms, mice and rats. The phenomenon is of intense interest to researchers who study aging. They want to know if caloric restriction works in people and if drugs could be made to mimic its effects.

So researchers restricted the diets of the flies and ran the same experiments. The calorie-restricted flies didn't live any longer when p53 was reduced in the insulin-producing cells. This evidence supports the notion that p53 reduction is one of the direct effects of caloric restriction.

Even more intriguing, Helfand said, is the fact that the 14 insulin-producing cells that seem to be critical for lifespan extension are the equivalent of beta cells in the human pancreas. Beta cells make and release insulin, the hormone that controls the level of glucose in the blood. The research team found that when p53 activity drops, so does insulin-responsive activity in the fat body, the major metabolic organ in the fruit fly.

"Our findings suggest that lifespan regulation is linked to metabolic regulation," said Helfand, a professor in Brown's Department of Molecular Biology, Cell Biology and Biochemistry. "The findings also suggest a tight connection between aging and diabetes. And we may have a new laboratory model for studying diabetes and other metabolic diseases."

The rest of the team included senior research assistants Suzanne Hosier and Chengyi Chang and undergraduate students Siti Nur Sarah Morris, Sandra Andersen, and Joshua Waitzman.

The National Institute on Aging, the Donaghue Foundation, the Ellison Medical Foundation and the American Federation for Aging Research supported the research.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "Key To Longer Life (in Flies) Lies In Just 14 Brain Cells." ScienceDaily. ScienceDaily, 21 September 2007. <www.sciencedaily.com/releases/2007/09/070920161313.htm>.
Brown University. (2007, September 21). Key To Longer Life (in Flies) Lies In Just 14 Brain Cells. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2007/09/070920161313.htm
Brown University. "Key To Longer Life (in Flies) Lies In Just 14 Brain Cells." ScienceDaily. www.sciencedaily.com/releases/2007/09/070920161313.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
Ebola: Life Without School in Guinea

Ebola: Life Without School in Guinea

AFP (Nov. 21, 2014) Following the closure of schools and universities in Guinea because of the Ebola virus, students look for temporary work or gather in makeshift classrooms to catch up on their syllabus. Duration: 02:14 Video provided by AFP
Powered by NewsLook.com
UN Says It Will Scale Up Its Ebola Response

UN Says It Will Scale Up Its Ebola Response

AFP (Nov. 20, 2014) UN Resident Coordinator David McLachlan-Karr and WHO representative in the country Daniel Kertesz updated the media on the UN Ebola response on Wednesday. Duration: 00:51 Video provided by AFP
Powered by NewsLook.com
Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Reuters - US Online Video (Nov. 20, 2014) U.S. Congress hears from a victim and company officials as it holds a hearing on the safety of Takata airbags after reports of injuries. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins