Featured Research

from universities, journals, and other organizations

Novel, Low-cost Method Of Sifting Genome's High-value Regions Devised

Date:
November 7, 2007
Source:
Cold Spring Harbor Laboratory
Summary:
Scientists have developed a new means of extracting and interpreting data from the human genome that is more powerful and more economical than methods currently employed. The new technology, called selective resequencing, promises to be a boon to many kinds of research, including efforts to comb vast stretches of the genome for mutant genes implicated in major diseases such as cancer and schizophrenia.

Scientists at Cold Spring Harbor Laboratory (CSHL) have developed a new means of extracting and interpreting data from the human genome that is more powerful and more economical than methods currently employed. The new technology, called selective resequencing, promises to be a boon to many kinds of research, including efforts to comb vast stretches of the genome for mutant genes implicated in major diseases such as cancer and schizophrenia.

Related Articles


A team led by CSHL's Gregory Hannon, Ph.D. a molecular and cell biologist, and W. Richard McCombie, Ph.D., a molecular biologist who heads the Laboratory's gene sequencing center, sought an efficient way of separating what's most valuable in the genome from less important stretches of genomic "code." In all, there are over 3 billion "letters" of code in the human genome, only 2 percent of which actually instructs cells to produce proteins, the workhorses of all life processes.

CSHL's new method is innovative because it enables genome scientists to save significant time and labor by capturing and then sequencing, or "spelling out," genomic code culled from relatively small, focused areas - as opposed to sequencing the entire genome and only afterward honing in on areas of interest.

"In practical terms, this means that a new world of discovery is opening to scientists interested in studying the genomes of large groups of people on a comparative basis - which is a prime basis for our insights about gene mutations that cause disease," said Dr. Hannon.

Dr. McCombie added: "By enabling scientists to target a small fraction of the genome, our method makes it possible for people with interesting ideas, to do significant work, on a modest budget. This will afford researchers the opportunity to include enough samples to conduct truly meaningful genome-wide comparative studies."

The CSHL team's innovation is demonstrated in a paper appearing in the November 4, 2007 online edition of Nature Genetics. A set of seven flexible, high-density microarrays, or gene-chips, were used to extract from a DNA sample only those stretches of genomic sequence that code for the manufacture of proteins. These segments, called exons, following their capture on the arrays were enriched and then sent to a state-of-the-art sequencing machine. The technique is called selective resequencing because it compares the newly obtained targeted sequences - in this case, of exons - with those of a "reference" version of the whole genome produced by the Human Genome Project.

The authors of "Genome-wide in situ exon capture for selective resequencing" include: Emily Hodges, Zhenyu Xuan, Vivekanand Balija, Melissa Kramer, Michael N. Molla, Steven W. Smith, Christina M. Middle, Matthew J. Rodesch, Thomas J. Albert, Gregory J. Hannon, and W. Richard McCombie. An advance version of the paper is available online.

The work was performed in cooperation with NimbleGen Systems, Inc., a genomics company based in Madison, Wisconsin.

CSHL is a private, non-profit research and education institution dedicated to exploring molecular biology and genetics in order to advance the understanding and ability to diagnose and treat cancers, neurological diseases, and other causes of human suffering.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "Novel, Low-cost Method Of Sifting Genome's High-value Regions Devised." ScienceDaily. ScienceDaily, 7 November 2007. <www.sciencedaily.com/releases/2007/11/071106164721.htm>.
Cold Spring Harbor Laboratory. (2007, November 7). Novel, Low-cost Method Of Sifting Genome's High-value Regions Devised. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2007/11/071106164721.htm
Cold Spring Harbor Laboratory. "Novel, Low-cost Method Of Sifting Genome's High-value Regions Devised." ScienceDaily. www.sciencedaily.com/releases/2007/11/071106164721.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins