Featured Research

from universities, journals, and other organizations

New Chimeric Mouse Model For Human Liver Diseases, Drug Testing

Date:
December 5, 2007
Source:
Salk Institute
Summary:
Cells cultured in the lab are like a fish out of water. Often, their behavior does not reflect their biological function within an entire organ or organism, which, for example, turns studying human liver cells into a big challenge.

Transplanted human liver cells (shown in brown) take hold in the liver and repopulated the host organ over time. The images above show cross sections of mouse liver one month (top), two months (middle), and three months (bottom) after the injection of human hepatocytes.
Credit: Courtesy of Dr. Karl-Dimiter Bissig, Salk Institute for Biological Studies

Cells cultured in the lab are like a fish out of water. Often, their behavior does not reflect their biological function within an entire organ or organism, which, for example, turns studying human liver cells into a big challenge.

Related Articles


One way to get around the altered properties of the stranded cells is to populate mouse livers with human hepatocytes in the hope of creating a natural environment, which is exactly what researchers at the Salk Institute for Biological Studies did. They developed a simple system that allows them to transplant human hepatocytes into immunodeficient mice, which can now be used to test how drugs affect the liver.

"Rodents are often used as model organisms to study the efficacy and toxicity of drugs," says lead author Karl-Dimiter Bissig, M.D. Ph.D., a postdoctoral researcher in the Laboratory of Genetics, "but mouse and rat hepatocytes may function in very different ways when it comes to metabolism of drugs."

In the past, this has led to unexpected toxicity problems, when drugs moved into clinical trials after toxicity tests in rats failed to reveal adverse effects (e.g. Troglitazone). But it also worked the other way around. "The clinical introduction of furosamide, a powerful but perfectly safe diuretic, has been slowed down because of its hepatotoxicity in rats," says Bissig.

The work also holds promise for a better understanding of infectious diseases that affect the liver. "It is basically impossible to grow human hepatocytes in the lab, which was a big hurdle for the study of viruses such as hepatitis A and hepatitis B," says senior author Inder Verma, Ph.D., a professor in the Laboratory of Genetics.

But most importantly, Bissig says, the mice will be an invaluable tool to advance regenerative medicine. "Many inherited disorders affecting liver metabolism could be cured if only five percent of all hepatocytes would express the missing enzyme," he says.

In fact, that's the underlying principle of the Salk researchers' new chimeric mouse. It is based on a murine model for hereditary tyrosinaemia type I, developed by researchers at Oregon Healthy & Science University. An enzymatic defect in the tyrosine catabolism results in a toxic accumulation of byproducts within hepatocytes unless the mice are treated with a drug called NBTC.

Withdrawing the drug allows to selectively expand hepatocytes that do not have this defect, such as transplanted human hepatocytes. Within three months of transplantation, up to 20 percent of the mouse liver is repopulated by human hepatocytes. But what's more, the transplanted cells keep producing a foreign protein slipped inside with the help of a lentiviral vector, the kind usually used for gene therapy. "We are very excited about that aspect since very often cells shut off the production of proteins introduced as part of gene therapy," says Verma.

This research was recently published in the online edition of the Proceedings of the National Academy of Sciences.

Researchers who also contributed to the study include graduate student Tam T. Le and post-doctoral researcher Niels-Bjarne Woods, Ph.D

The research was funded by grants from the National Institutes of Health, the Leducq Foundation, the Ellison Medical Foundation, and the H.N. and Frances C. Berger Foundation.


Story Source:

The above story is based on materials provided by Salk Institute. Note: Materials may be edited for content and length.


Cite This Page:

Salk Institute. "New Chimeric Mouse Model For Human Liver Diseases, Drug Testing." ScienceDaily. ScienceDaily, 5 December 2007. <www.sciencedaily.com/releases/2007/12/071204091921.htm>.
Salk Institute. (2007, December 5). New Chimeric Mouse Model For Human Liver Diseases, Drug Testing. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2007/12/071204091921.htm
Salk Institute. "New Chimeric Mouse Model For Human Liver Diseases, Drug Testing." ScienceDaily. www.sciencedaily.com/releases/2007/12/071204091921.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins