Featured Research

from universities, journals, and other organizations

More 'Functional' DNA In Genome Than Previously Thought

Date:
December 13, 2007
Source:
Johns Hopkins Medical Institutions
Summary:
Surrounding the small islands of genes within the human genome is a vast sea of mysterious DNA. While most of this non-coding DNA is junk, some of it is used to help genes turn on and off. As reported online this week in Genome Research, Hopkins researchers have now found that this latter portion, which is known as regulatory DNA and contributes to inherited diseases like Parkinson's or mental disorders, may be more abundant than we realize.

Surrounding the small islands of genes within the human genome is a vast sea of mysterious DNA. While most of this non-coding DNA is junk, some of it is used to help genes turn on and off. As reported online this week in Genome Research, Hopkins researchers have now found that this latter portion, which is known as regulatory DNA and contributes to inherited diseases like Parkinson's or mental disorders, may be more abundant than we realize.

Related Articles


By conducting an exhaustive analysis of the DNA sequence around a gene required for neuronal development, Andrew McCallion, Ph.D., an assistant professor in the McKusick-Nathans Institute of Genetic Medicine, and his team found that current computer programs that scan the genome looking for regulatory DNA can miss more than 60 percent of these important DNA regions.

The current methods find regulatory sequences by comparing DNA from distantly related species, under the theory that functionally important regions will appear more similar in sequence than non-functional regions. "The problem with this approach, we have discovered," says McCallion, "is that it's often throwing the baby out with the bath water. So while we believe sequence conservation is a good method to begin finding regulatory elements, to fully understand our genome we need other approaches to find the missing regulatory elements."

McCallion had suspected that using sequence conservation would overlook some regulatory DNA, but to see how much, he set up a small pilot project looking at the phox2b gene; he chose this gene both because of its small size and his interest in nerve development (phox2b is involved in forming part of the brain associated with stress response as well as nerves that control the digestive system).

The researchers created what they call a "tiled path," cutting up the DNA sequence around the phox2b gene into small pieces, then inserted each piece into zebrafish embryos along with a gene for a fluorescent protein. If a phox2b fragment was a regulatory element, then it would cause the protein to glow. By watching the growing fish embryos - which have the advantage of being transparent - the researchers could see which pieces were regulators.

They uncovered a total of 17 discrete DNA segments that had the ability to make fish glow in the right cells. The team then analyzed the entire region around the phox2b gene using the five commonly used computer programs that compute sequence conservation; these established methods picked up only 29 percent to 61 percent of the phox2b regulators McCallion identified in the zebrafish experiments.

"Our data supports the recent NIH encyclopedia of DNA elements project, which suggests that many DNA sequences that bind to regulatory proteins are in fact not conserved," says McCallion. "I hope this pilot shows that these types of analyses can be worthwhile, especially now that they can be done quickly and easily in zebrafish."

McCallion is now planning a larger study of other neuronal genes. "I think we are only starting to realize the importance and abundance of regulatory elements; by regulating the gene activity in each cell they help create the diverse range of cell types in our body."

The research was funded by the National Institutes of Health and the March of Dimes.

Authors on the paper are David McGaughey, Ryan Vinton, Jimmy Huynh, Amr Al-Saif, Michael Beer and McCallion of Johns Hopkins.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "More 'Functional' DNA In Genome Than Previously Thought." ScienceDaily. ScienceDaily, 13 December 2007. <www.sciencedaily.com/releases/2007/12/071211232720.htm>.
Johns Hopkins Medical Institutions. (2007, December 13). More 'Functional' DNA In Genome Than Previously Thought. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2007/12/071211232720.htm
Johns Hopkins Medical Institutions. "More 'Functional' DNA In Genome Than Previously Thought." ScienceDaily. www.sciencedaily.com/releases/2007/12/071211232720.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) — Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins