Featured Research

from universities, journals, and other organizations

How Molecular Muscles Help Cells Divide

Date:
December 18, 2007
Source:
Yale University
Summary:
Time-lapse videos and computer simulations provide the first concrete molecular explanation of how a cell flexes tiny muscle-like structures to pinch itself into two daughter cells at the end of each cell division, according to a report in Science Express.

Time-lapse videos and computer simulations provide the first concrete molecular explanation of how a cell flexes tiny muscle-like structures to pinch itself into two daughter cells at the end of each cell division, according to a report in Science Express.

Cell biologists at Yale and physicists at Columbia teamed up to model and then observe the way a cell assembles the "contractile ring," the short-lived force-producing structure that physically divides cells and is always located precisely between the two daughter cell nuclei.

"This contractile ring is thought to operate like an old-fashioned purse string," said senior author Thomas D. Pollard, Sterling Professor and Chair of the Department of Molecular, Cellular & Developmental Biology at Yale. "It constricts the cell membrane into a cleavage furrow that eventually pinches the cell in two."

Living cells divide into two daughter cells to reproduce themselves. In one-celled organisms like yeast, each cell division yields a new creature. In humans and other multicellular species, cell division creates an adult from an embryo. In fully developed adults, it provides necessary replacements for cells that are continuously dying in the course of natural wear and tear.

Scientists have long studied aspects of how cells actually make this division -- the structure of the cellular machinery, how it assembles and how the machine works. Since the 1970s, it has been known that the contractile ring is made up of muscle-like actin and myosin -- contractile proteins that are involved a process in some ways similar to the muscle contraction used to move arms or legs. However, there was no plausible mechanism to explain how it worked.

"We found that fission yeast cells assemble their contractile ring using a 'search, capture, pull and release' mechanism," said Pollard. "This is important because it shows for the first time how the contractile machinery assembles and how all the pieces get to the right place to get the job done."

Time-lapse imaging and computer modeling demonstrated that cells undergoing mitosis set up small clusters of proteins, or nodes, on the inside of the cell membrane around the equator of the cell. Proteins in these nodes begin to put out a small number of filaments composed of the protein actin. The filaments grow in random directions until they encounter another node, where myosin motors in the contacted node pull on the actin filament, bringing the two nodes together.

However, the researchers found that each connection is broken in about 20 seconds. Releasing the connections and initiating subsequent rounds of "search and capture" appears essential to the assembly process, say the scientists. The assembly involves many episodes of attractions between pairs of nodes proceeding in parallel. Eventually the nodes form into a condensed contractile ring around the equator, ready to pinch the mother into two daughters at a later stage.

"A novel and important aspect of this work was that we used computer simulations at every step to test what is feasible physically and to guide our experiments," said author Ben O'Shaughnessy, professor of chemical engineering at Columbia. "The simulations show that cells use reaction rates that are nearly ideal to make this mechanism work on the time scale of the events in the cells."

"Future work will involve testing the concepts learned from fission yeast in other cells to learn if the mechanism is universal," said Pollard. "Since other cells, including human cells, depend on similar proteins for cytokinesis [cell division], it is entirely possible that they use the same strategy."

Other authors on the paper were Dimitrios Vavylonis at Columbia, Yale and Lehigh University; Jian-Qui Wu and Steven Hao at Yale. The work was supported by research grants from the National Institutes of Health.

Citation: Science Express: (December 13, 2007).


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Cite This Page:

Yale University. "How Molecular Muscles Help Cells Divide." ScienceDaily. ScienceDaily, 18 December 2007. <www.sciencedaily.com/releases/2007/12/071214145000.htm>.
Yale University. (2007, December 18). How Molecular Muscles Help Cells Divide. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2007/12/071214145000.htm
Yale University. "How Molecular Muscles Help Cells Divide." ScienceDaily. www.sciencedaily.com/releases/2007/12/071214145000.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Adorable Video of Baby Rhino and Lamb Friend Playing

Adorable Video of Baby Rhino and Lamb Friend Playing

Buzz60 (Oct. 20, 2014) Gertjie the Rhino and Lammie the Lamb are teaching the world about animal conservation and friendship. TC Newman (@PurpleTCNewman) has the adorable video! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins