Featured Research

from universities, journals, and other organizations

Cheating Is Easy For The Social Amoeba

Date:
February 18, 2008
Source:
Baylor College of Medicine
Summary:
Cheating is easy and seemingly without cost for the social amoeba known as Dictyostelium discoideum, said researchers who conducted the first genome-scale search for social genes and found more than 100 mutant genes that allow cheating. Cheating has special meaning in the world of Dictyostelium. In normal times, the organism exists as a single cell. However, when food gets scarce, the social amoebas aggregate into a multicellular organism that consists of thousands of individual cells. In doing so, one-fifth of the cells "sacrifice" themselves to become non-reproductive stalk cells that support the fruiting body of spores that can then be transported to more auspicious areas where they can begin the life cycle once more as single cells.

Two images of dictyostelium discoideum.
Credit: Courtesy of Stephen Alexander

Cheating is easy and seemingly without cost for the social amoeba known as Dictyostelium discoideum, said a team of researchers from Baylor College of Medicine and Rice University in Houston who conducted the first genome-scale search for social genes and found more than 100 mutant genes that allow cheating.

Related Articles


Cheating has special meaning in the world of Dictyostelium. In normal times, the organism exists as a single cell. However, when food gets scarce, the social amoebas aggregate into a multicellular organism that consists of thousands of individual cells. In doing so, one-fifth of the cells "sacrifice" themselves to become non-reproductive stalk cells that support the fruiting body of spores that can then be transported to more auspicious areas where they can begin the life cycle once more as single cells.

Previous studies had shown that even when the social amoebas come into contact with others who have a different genetic blueprint, they form mixed multicellular structures that produce roughly fair proportions of spores, said Dr. Gad Shaulsky, associate professor of molecular and human genetics at BCM. For example, if the aggregate is 90 percent from a group with one genetic fingerprint and 10 percent from another group, the organism's allocation of stalk to spore will be the same. Ninety percent of the stalk cells will be from one type and 10 percent from another. The same for the spores.

However, his colleagues, Drs. Joan Strassmann and David Queller, evolutionary biologists at Rice, noticed that there are Dictyostelium strains in nature that if mixed under lab conditions "cheat."

"They make more than their fair share of spores, sometimes to the exclusion of others. They can completely dominate the population," said Shaulsky.

To understand this better, Shaulsky and Dr. Adam Kuspa, professor and chair of biochemistry and molecular biology at BCM, and their Rice colleagues undertook a genome-wide study of the 10,000 genes in the organism to find those mutants that permit cheating.

"Is there a genetic basis for cheating?" Shaulsky said. "Is it easy to cheat or not?"

In a previous study, he and his colleagues showed that there is sometimes a cost to cheating. They identified a mutation that made it easier for a cell to become "pre-spore" but then the cells did not produce spores very well.

The phenomenon is called pleiotropy, Shaulsky said. One evolutionary theory holds that a lot of genes have dual function. One is social but the other is metabolic or structural -- something that contributes to the cell's survival. A social gene is one that reduces a cell's "fitness" to survive singly but increases the survival chances of the whole organism.

In this study done on a genome-wide basis, he and his colleagues saturated the genome with mutations and grew strains that each had a mutation. Over 20 generations, they mixed the strains and forced them to develop chimeras -- multi-cellular organisms that have are a mixture of cells with different genetic blueprints.

"Under these circumstances, cells that have a higher propensity to become spores become enriched," said Shaulsky. "In the end, we found more than 100 mutants that can cheat."

When they mixed mutant strains with their normal counterparts in a 50-50 concentration, they found that the "cheaters" gave rise to more than their fair share of spores.

However, when they tested the "cheaters" ability to develop and form spores on their own, they were surprised to find that most of them did not have a "cost." In other words, they did not lose fitness in order to cheat.

"The fact that these mutations do not have an overt cost says things are a lot more complicated in nature than we thought," said Shaulsky, "but it is possible that the way we calculate 'cost' in the laboratory is not the way it's calculated in nature."

He and his colleagues theorize that there may be a constant battle between "cheaters" and non-cheaters and that the resulting adaptations have much to do with evolution.

"Now we are looking for counter-cheaters -- mutants that can resist cheating," he said.

Though little understood, social cooperation among microbes causes major medical and industrial problems. Medically, cooperation underlies conditions as mundane as tooth decay to more serious conditions like chronic infections associated with medical implants. Industrially, slimy colonies of bacteria also foul filters at water treatment plants and other facilities, causing millions of dollars of damage each year.

A report of their work appears in the current issue of the journal Nature.

The BCM-Rice collaboration is the result of a National Science Foundation program that encourages scientists to take on the grand challenges in biological research. The team received $5 million in 2003 to use the latest modern molecular genetics and genomic techniques to study the causes, mechanisms and effects of social evolution.

Others who took part in this work include Christopher R. L. Thompson, Elizabeth Villegas, Jessica Setz, Christopher Dinh, Anup Parikh, Richard Sucgang, all of BCM; and Lorenzo A. Santorelli, the first author, a Rice University student who did the work in Shaulsky's laboratory at BCM.

Other support for this work came from a Wray-Todd Fellowship and the Wellcome Trust.


Story Source:

The above story is based on materials provided by Baylor College of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Baylor College of Medicine. "Cheating Is Easy For The Social Amoeba." ScienceDaily. ScienceDaily, 18 February 2008. <www.sciencedaily.com/releases/2008/02/080213133350.htm>.
Baylor College of Medicine. (2008, February 18). Cheating Is Easy For The Social Amoeba. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2008/02/080213133350.htm
Baylor College of Medicine. "Cheating Is Easy For The Social Amoeba." ScienceDaily. www.sciencedaily.com/releases/2008/02/080213133350.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins