Featured Research

from universities, journals, and other organizations

Turning Genes Off And On: Methylation Process Is Transient, Cyclical And Dynamic, Not Static As Previously Thought

Date:
March 8, 2008
Source:
Science Foundation Ireland
Summary:
New revelations have been made on possible ways to switch genes on and off that impacts on previous understandings of the biological process of how cells interpret their DNA. Until now, it had been presumed that in the chemical process of methylation (when a gene is turned on or turned off) a gene was stable and unchangeable.

A research project led by Professor Frank Gannon, Director General of Sciencen Foundation Ireland (SFI), has uncovered new revelations on possible ways to switch genes on and off that impacts on previous understandings of the biological process of how cells interpret their DNA.

Related Articles


Until the research reported in two papers published in the journal Nature, it had been presumed that in the chemical process of methylation (when a gene is turned on or turned off) a gene was stable and unchangeable. However, arising from the findings of this research group at the European Molecular Biology Laboratory in Heidelberg in Germany which included Dr. George Reid, EMBL Professor in Heidelberg, it has been shown that this is not the case and that the methylation process is transient, cyclical and dynamic. This insight came from an approach of synchronising all cells in a population such that variations were made visible.

With the sequencing of the human genome the general public has become very aware that the answer to many diseases lies in our DNA. Crucially, only some of the total possibility of genes are expressed in any given tissue. For example, a protein that is active in a nerve cell is not expressed in the liver. The way in which this is controlled is a complex area that has attracted much research.

One fundamental controlling factor is whether the DNA is tagged or modified in the region of a particular gene. This modification (methylation) is important not only in gene expression but also in ensuring that there is the right balance in the level of expression of proteins in different cells. For instance women with two chromosomes have one of these silenced by the same methylation tag such that they have one active X chromosome as have men. The consequences of an excess level of expression is well know, for instance in Downs Syndrome where an extra chromosome is active.

One paper shows that this is a general phenomenon occurring at many different genes and in many different cell types. The second paper arises predominantly from the work of Raphael Metivier, a former Post Doctoral student of Professor Gannon, carried out in Rennes in France, which shows a mechanism for this newly described phenomenon.

In the first paper, researchers report that estrogen causes rapid epigenetic changes in breast cancer cells. The new findings impact upon our understanding of how cells interpret their DNA and suggest that epigenetic regulation can affect gene expression immediately and long-term.

Epigenetic changes to the structure of chromatin -- tightly packaged DNA - grant or deny access to the molecular machinery that transcribes DNA and thereby regulate gene expression. One of these mechanisms is DNA methylation, where a small chemical residue called a methyl group is added to strategic bases on the DNA. The methyl group prevents the transcription machinery from docking and thereby shuts down gene expression.

They found out that methylation marks occur rapidly in breast cancer cells in response to hormones such as estrogen or drug compounds. Estrogen withdrawal or treatment with the established anticancer drug doxorubicin cause the methyl groups to be removed from regulatory regions of specific genes within tens of minutes in human breast cancer cells. The treatment sets off a whole cycle of events: initial demethylation renders silent genes active and subsequent remethylation shuts them down again. This cycle repeats itself every 1.5 hours.

"We observed that unlike assumed for a long time methylation can act on a very short timescale. The results challenge our understanding of epigenetics as a means to regulate gene expression permanently," says Sara Kangaspeska, who carried out the research together with Brenda Stride.

"In particular breast cancer is affected by estrogen signalling and changes in epigenetic control," says George Reid, co-senior author of the study. "Our next step will be to find small molecules that target the cyclical methylation processes to elucidate their precise role."

The two papers were published in Nature, 6 March 2008.

1. Transient Cyclical Methylation of Promoter DNA paper was authored by S. Kangaspeska, B. Stride, R. Mιtivier, M. Polycarpou-Schwarz, D. Ibberson, R.P. Carmouche, V. Benes, F. Gannon & G. Reid. This work was supported by the EC 6th framework programme grant CRESCENDO and by the European Molecular Biology Organisation (EMBO).

2. Cyclical DNA Methylation of a Transcriptionally Active Promoter paper was authored by Raphael Metivier, Rozenn Gallais, Christophe Tiffoche, Christine Le Peron, Renata Z. Jurkowska, Richard P. Carmouche, David Ibberson, Peter Barath, Florence Demay, George Reid, Vladimir Benes, Albert Jeltsch, Frank Gannon & Gilles Salbert. This work was supported by funds from the Ministere de l’Education Nationale de l’Enseignement Superieur et de la Recherche (MENESR), the Centre National de la Recherche Scientifique (CNRS), the University of Rennes, the Association pour la Recherche contre le Cancer (ARC), the Ligue contre le Cancer, and by funding from EMBO and EMBL.


Story Source:

The above story is based on materials provided by Science Foundation Ireland. Note: Materials may be edited for content and length.


Cite This Page:

Science Foundation Ireland. "Turning Genes Off And On: Methylation Process Is Transient, Cyclical And Dynamic, Not Static As Previously Thought." ScienceDaily. ScienceDaily, 8 March 2008. <www.sciencedaily.com/releases/2008/03/080305144230.htm>.
Science Foundation Ireland. (2008, March 8). Turning Genes Off And On: Methylation Process Is Transient, Cyclical And Dynamic, Not Static As Previously Thought. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2008/03/080305144230.htm
Science Foundation Ireland. "Turning Genes Off And On: Methylation Process Is Transient, Cyclical And Dynamic, Not Static As Previously Thought." ScienceDaily. www.sciencedaily.com/releases/2008/03/080305144230.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) — Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins