Featured Research

from universities, journals, and other organizations

How Stealthy HIV Protein Gets Into Cells

Date:
March 20, 2008
Source:
University of Illinois at Urbana-Champaign
Summary:
Scientists have known for more than a decade that a protein associated with the HIV virus is good at crossing cell membranes, but they didn't know how it worked. Now they have solved the mystery, and their findings could improve the design of therapeutic agents that cross a variety of membrane types.

A multidisciplinary team – graduate student Abhijit Mishra, left; materials science and engineering professor Gerard Wong; and postdoctoral researcher Vernita Gordon – has solved the mystery of how stealthy HIV protein gets into cells. They are standing next to a small angle X-ray spectrometer. Their findings could improve the design of therapeutic agents that cross a variety of membrane types.
Credit: Photo by L. Brian Stauffer

Scientists have known for more than a decade that a protein associated with the HIV virus is good at crossing cell membranes, but they didn’t know how it worked. A multidisciplinary team from the University of Illinois has solved the mystery, and their findings could improve the design of therapeutic agents that cross a variety of membrane types.

Related Articles


The TAT protein transduction domain of the HIV virus has some remarkable properties. First, it is a tiny part of the overall TAT protein, containing only 11 amino acids. Second, and more important, it has an uncanny knack for slipping across membranes, those lipid-rich bags that form the boundaries of cells and cellular components and are designed to keep things out.

“TAT is extremely good at getting through cell membranes,” said materials science and engineering professor Gerard Wong, who led the new study. “You can attach TAT to almost anything and it will drag it across the membrane. It can work for virtually all tissues, including the brain.”

The TAT protein’s versatility makes it desirable as a drug-delivery device. It is already being used for gene therapy. (TAT is not involved in transmitting the HIV virus; it only aids the passage of other materials across the membranes of infected cells.)

Because it has so many potential uses, scientists have long endeavored to understand the mechanism that allows the TAT protein to work. But their efforts have been stymied by some baffling observations.

Six of its 11 residues are arginine, a positively charged amino acid that gives the protein its activity.

Most membranes are composed of a double layer of neutral, water-repellent lipids on their interiors, with hydrophilic (water-loving) “head groups” on their internal and external surfaces.  The head groups generally carry a mildly negative charge, Wong said. Since opposites attract, it made sense to the researchers that the positively charged TAT protein would attract the negatively charged head groups on the surface of the membranes. This attraction could deform the membrane in a way that opened up a pathway through it.

If a short, positively charged protein was all that was needed for TAT to work, the researchers thought, then any positively charged amino acid should do the trick. But when they replaced the arginine in the protein with other positively charged amino acids, it lost its function. Clearly, a positive charge was not enough to make it work.

To get a better picture of the interaction of TAT with a variety of membranes, the researchers turned to confocal microscopy and synchrotron x-ray scattering (SAXS). Although sometimes used in biological studies, SAXS is more common to the fields of physics or materials science, where the pattern of X-ray scattering can reveal how atomic and nano scale materials are structured.

The researchers found that adding the TAT protein to a membrane completely altered its SAXS spectrum, a sign that the membrane conformation had changed. After analyzing the spectrum, the researchers found that TAT had made the membranes porous.

“The TAT sequence has completely reconstructed (the membrane) and made it into something that looks a little bit like a sponge with lots of holes in it,” Wong said.

Something about the TAT protein had induced a “saddle splay curvature” in the membrane. This shape resembles a saddle (like that of a Pringles potato chip), giving the openings, or pores, a bi-directional arc like that seen inside a doughnut hole.

The newly formed pores in the membrane were 6 nanometers wide, large enough to allow fairly sizeable proteins or other molecules to slip through. The pores would also make it easier for other biological processes to bring materials through the membrane.

Further analysis showed that the arginine was interacting with the head groups on the membrane lipids in a way that caused the membrane to buckle in two different directions, bringing on the saddle splay curvature that allowed the pores to form.

When another positively charged amino acid, lysine, was used instead of arginine, the protein bent the membrane in one direction only, forming a shape more like a closed cylinder that would not allow materials to pass through.

These findings will aid researchers hoping to enhance the properties of the TAT protein that make it a good vehicle for transporting therapeutic molecules into cells, Wong said.

A paper describing their findings appears this month in Angewandte Chemie.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "How Stealthy HIV Protein Gets Into Cells." ScienceDaily. ScienceDaily, 20 March 2008. <www.sciencedaily.com/releases/2008/03/080317131638.htm>.
University of Illinois at Urbana-Champaign. (2008, March 20). How Stealthy HIV Protein Gets Into Cells. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2008/03/080317131638.htm
University of Illinois at Urbana-Champaign. "How Stealthy HIV Protein Gets Into Cells." ScienceDaily. www.sciencedaily.com/releases/2008/03/080317131638.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins