Featured Research

from universities, journals, and other organizations

Squid Beak Is Both Hard And Soft, A Material That Engineers Want To Copy

Date:
March 31, 2008
Source:
University of California - Santa Barbara
Summary:
How did nature make the squid's beak super hard and sharp -- allowing it, without harm to its soft body -- to capture its prey? The question, considered has captivated those interested in creating new materials that mimic biological materials. The results are published in the journal Science. The sharp beak of the Humboldt squid is one of the hardest and stiffest organic materials known.

Humboldt squid (Dosidicus gigas).
Credit: Image courtesy of NOAA/MBARI 2006

How did nature make the squid's beak super hard and sharp ---- allowing it, without harm to its soft body ---- to capture its prey?

The question has captivated those interested in creating new materials that mimic biological materials. The results are published in the journal Science.

The sharp beak of the Humboldt squid is one of the hardest and stiffest organic materials known. Engineers, biologists, and marine scientists at the University of California, Santa Barbara, have joined forces to discover how the soft, gelatinous squid can operate its knife-like beak without tearing itself to pieces.

UC Santa Barbara is a mecca for this type of interdisciplinary study, and draws scientists and engineers from all over the world to grapple with questions that cross a wide range of science and engineering disciplines.

The key to the squid beak lies in the gradations of stiffness. The tip is extremely stiff, yet the base is 100 times more compliant, allowing it to blend with surrounding tissue. However, this only works when the base of the beak is wet. After it dries out, the base becomes similarly stiff as the already desiccated beak tip.

Humboldt squids, or Dosidicus gigas, are about three feet wide and can injure a fish with one swift motion. According to the article, ... "a squid beak can sever the nerve cord to paralyze prey for later leisurely dining."

"Squids can be aggressive, whimsical, suddenly mean, and they are always hungry," said Herb Waite, co-author and professor of biology at UC Santa Barbara. "You wouldn't want to be diving next to one. A dozen of them could eat you, or really hurt you a lot." The creatures are very fast and swim by jet propulsion.

Besides humans, squid's main predator is the sperm whale, and these animals frequently show the scars of battle, with skin marred by the squid's sharp suckers. Waite noted that squid muscle is available in locally made sandwiches, often called "calamari steak sandwiches."

Waite finds the squid beak compelling and he interested postdoctoral researcher and first author Ali Miserez in joining the study. Miserez is affiliated with UCSB's Department of Materials, the Department of Molecular, Cellular, and Developmental Biology (MCDB), and the Marine Science Institute.

"I'd always been skeptical of whether there is any real advantage to 'functionally graded' materials, but the squid beak turned me into a believer," said co-author Frank Zok, professor and associate chair of the Department of Materials at UC Santa Barbara.

"Here you have a 'cutting tool' that's extremely hard and stiff at its tip and is attached to a material ---- the muscular buccal mass ---- that has the consistency of Jell-o," said Zok.

"You can imagine the problems you'd encounter if you attached a knife blade to a block of Jell-o and tried to use that blade for cutting. The blade would cut through the Jell-o at least as much as the targeted object. In the case of the squid beak, nature takes care of the problem by changing the beak composition progressively, rather than abruptly, so that its tip can pierce prey without harming the squid in the process. It's a truly fascinating design!"

Zok explained that most engineered structures are made of combinations of very different materials such as ceramics, metals and plastics. Joining them together requires either some sort of mechanical attachment like a rivet, a nut and bolt, or an adhesive such as epoxy. But these approaches have limitations.

"If we could reproduce the property gradients that we find in squid beak, it would open new possibilities for joining materials," explained Zok. "For example, if you graded an adhesive to make its properties match one material on one side and the other material on the other side, you could potentially form a much more robust bond," he said. "This could really revolutionize the way engineers think about attaching materials together."

According to Waite, the researchers were helped by the fact that squid seem to be moving north from areas where they have been traditionally concentrated, for example deep waters off the coast of Acapulco, Mexico. Recently however Humboldt squid have been found in numbers in Southern California waters. Dozens of dead squid have recently washed up on campus beaches, providing the researchers with more beaks to study.

The two other co-authors on the Science article are from UCSB. They are Todd Schneberk, affiliated with materials research and MCDB, and Chengjun Sun, affiliated with MCDB and the Marine Science Institute.


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Santa Barbara. "Squid Beak Is Both Hard And Soft, A Material That Engineers Want To Copy." ScienceDaily. ScienceDaily, 31 March 2008. <www.sciencedaily.com/releases/2008/03/080327172330.htm>.
University of California - Santa Barbara. (2008, March 31). Squid Beak Is Both Hard And Soft, A Material That Engineers Want To Copy. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/03/080327172330.htm
University of California - Santa Barbara. "Squid Beak Is Both Hard And Soft, A Material That Engineers Want To Copy." ScienceDaily. www.sciencedaily.com/releases/2008/03/080327172330.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins