Featured Research

from universities, journals, and other organizations

Fish Hatchery Controversy Takes On New Significance As Wild Chinook Salmon Populations Crash

Date:
April 8, 2008
Source:
University of California - Santa Cruz
Summary:
A recent study indicates that wild salmon may account for just 10 percent of California's fall-run chinook salmon population, while the vast majority of the fish come from hatcheries. The findings are especially troubling in light of the disastrous decline in the population this year, which will probably force the closure of the 2008 season for commercial and recreational salmon fishing.

Biologist Rachel Barnett-Johnson analyzed salmon ear bones to distinguish between wild and hatchery-raised fish.
Credit: Image courtesy of University of California - Santa Cruz

A recent study indicates that wild salmon may account for just 10 percent of California's fall-run chinook salmon population, while the vast majority of the fish come from hatcheries. The findings are especially troubling in light of the disastrous decline in the population this year, which will probably force the closure of the 2008 season for commercial and recreational salmon fishing.

The role of hatcheries in the management of salmon populations has been a contentious issue for many years. The new findings appear to support the idea that including artificially propagated fish in population estimates can mask declines in natural populations caused by a lack of suitable habitat.

"Our finding that 90 percent of the fish are from hatcheries surprised a lot of people," said Rachel Barnett-Johnson, a fisheries biologist with the Institute of Marine Sciences at the University of California, Santa Cruz.

Barnett-Johnson and her coworkers published their results in the December 2007 issue of the Canadian Journal of Fisheries and Aquatic Sciences. The main focus of the paper is the development of a new technique for distinguishing between wild and hatchery-raised salmon. The researchers validated the technique and used it to estimate the percentage of wild fish among the fall-run chinook salmon caught by commercial fishing boats along the central California coast in 2002.

"It's a one-time estimate for that year, and these things do change over time. But it's the most recent and perhaps best estimate we have," said Churchill Grimes, director of the National Marine Fisheries Service Santa Cruz Laboratory and a coauthor of the paper.

In 2002, the fall run of chinook salmon in the Sacramento River was estimated at 775,000 adults returning to spawn, according to the Pacific Fisheries Management Council. Fewer than 60,000 are expected this year, even with no ocean fishing allowed. If the percentage of wild fish is the same this year as in 2002, it would mean fewer than 6,000 wild salmon in what has been the largest salmon run on the West Coast.

The researchers were able to distinguish between wild and hatchery-raised fish by analyzing the banding patterns in fish ear bones, called otoliths. Like tree rings, characteristic light and dark bands in the otoliths reflect daily growth increments, and the width of the bands indicates growth rates. The differences observed between otoliths from wild and hatchery-raised fish are the result of differences in the availability of food at a critical transition in the salmon life cycle, when the young fish (called fry) have used up the food supply in their yolk sacs and must start feeding themselves, Barnett-Johnson said.

"In the wild, they hide in the gravel until they use up the yolk sac, and then there is a period of slower growth while they learn to feed on aquatic insects. This abrupt transition and slow growth are captured in the growth bands of the otolith," Barnett-Johnson said. "In the hatchery, there is an abundant supply of food, so the transition is smoother and growth bands are wider."

Every fish, therefore, carries an identifier of its origin as a natural tag in the earbone, which has significant advantages over techniques for tagging fish, she said. Coded wire tags (CWTs), for example, have been used to mark fish for some studies. But only a small fraction of hatchery fish and even fewer wild fish are tagged or marked in California, according to Barnett-Johnson. Some small hatchery operations clip the fins of all hatchery fish so they can be distinguished from wild fish, but fall-run chinook salmon are not marked that way. As a result, there have not been good estimates of the proportion of wild fish in the population until this study, she said.

"The only other estimates out there pointed in the other direction--significantly more wild fish than hatchery fish," Barnett-Johnson said. "One study used CWT recoveries from hatchery fish and estimated that 33 percent of adults returning to rivers in the Central Valley were from hatcheries. The other number floating around comes from counting the number of fish returning to spawn in rivers versus returning to hatcheries, and this estimated the number of 'wild' fish to be 3.5 times higher than hatchery returns."

One reason these figures are so important is that they could affect the listing of the fall run under the Endangered Species Act (ESA). The question of whether hatcheries can help restore threatened and endangered salmon populations or if they actually harm wild populations has long been a controversial issue. It became a legal issue in 2001, when a federal judge revoked the ESA listing of Oregon coast coho salmon, ruling that the National Marine Fisheries Service (NMFS) should have included hatchery fish in the population counts.

A more recent federal court ruling, however, concluded that the health and viability of natural populations should be used as the benchmark for ESA status determinations. That ruling has been appealed to the U.S. Court of Appeals for the Ninth Circuit.

"The agency's policy on counting hatchery fish has flip-flopped as a result of these different legal decisions," Grimes said. "Now the focus is again on wild fish, and it doesn't appear there are many of them. That could be bad news for fishing because, if the fall run is listed under the Endangered Species Act, there would be no legal harvest."

Fisheries experts blame unfavorable ocean conditions for the dismally low returns of chinook and coho salmon to rivers and streams all along the West Coast this year. In 2005, when this year's returning salmon were juveniles just entering the ocean, food production in the California Current was much lower than usual due to a delay in the wind-driven upwelling of nutrient-rich water that sustains the food web along the coast. A similar disruption of the normal upwelling occurred the following year.

"We expect the returns to be as bad or worse next year as they were this year," Grimes said. "The years when those fish outmigrated into the ocean were the worst conditions that we've seen in over 25 years of observing spring conditions."

Compounding the situation is the degradation of the freshwater habitat for salmon in the Sacramento River and the rest of the Central Valley drainage system, he said. "There is no question that the river basin's capacity to produce salmon--the quality of the habitat--has been degraded something awful, and it just doesn't produce like it used to," Grimes said. "We have these remnant populations--that's all it is really. We're trying to manage what's left."

Barnett-Johnson said the otolith technique offers a new tool for monitoring the effectiveness of restoration efforts and tracking the numbers of wild fish over time. By estimating the numbers of hatchery and wild fish independently, the technique can help to differentiate between effects on the population due to ocean conditions and those due to freshwater conditions. That's because hatchery-raised fish don't face the same hazards in the initial freshwater phase of their life cycle that wild fish do, so they would be affected less by freshwater conditions. Not only are hatchery fish protected and artificially fed in the hatcheries, they also get a free ride downstream in tanker trucks. The hazards associated with migrating downstream to the ocean range from predators to the pumps that siphon water out of the rivers for human use.

"Most of the hatcheries in the Central Valley put the fish in tanker trucks and release them into the lower San Francisco Bay Delta, so they bypass a lot of the mortality that occurs in the rivers," Barnett-Johnson said. "If freshwater mortality was a key factor in population declines, we would expect to see hatchery and wild populations responding differently."

Barnett-Johnson plans to use the otolith technique to track changes in the composition of the salmon population over time. Unfortunately, because her research depends on a collaboration with commercial fishermen, the possible closure of the fishery this year may mean that she will not be able to get any salmon otoliths to analyze.

"At a time when we really need more information on the status of wild populations, a complete closure would mean I can't conduct my research to provide this estimate," she said.

In addition to Barnett-Johnson and Grimes, the coauthors of the paper are Chantell Royer of Humboldt State University and Christopher Donohoe of the NMFS Santa Cruz Laboratory. This research was supported by the UC Marine Council and the Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO).


Story Source:

The above story is based on materials provided by University of California - Santa Cruz. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Santa Cruz. "Fish Hatchery Controversy Takes On New Significance As Wild Chinook Salmon Populations Crash." ScienceDaily. ScienceDaily, 8 April 2008. <www.sciencedaily.com/releases/2008/04/080403125221.htm>.
University of California - Santa Cruz. (2008, April 8). Fish Hatchery Controversy Takes On New Significance As Wild Chinook Salmon Populations Crash. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2008/04/080403125221.htm
University of California - Santa Cruz. "Fish Hatchery Controversy Takes On New Significance As Wild Chinook Salmon Populations Crash." ScienceDaily. www.sciencedaily.com/releases/2008/04/080403125221.htm (accessed September 19, 2014).

Share This



More Plants & Animals News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins