Featured Research

from universities, journals, and other organizations

Nutrient Pollution Reductions From Urban Stream Restoration Quantified

Date:
May 6, 2008
Source:
University of Maryland Center for Environmental Science
Summary:
Researchers have now quantified the amount of excess nitrogen removed from an urban stream during environmental restoration projects. This breakthrough allows environmental managers to assess the pollution-reducing benefits of storm water management and urban stream restoration, and could lead to new nitrogen reduction opportunities as public works managers make repairs to our nation's aging urban infrastructure.

Researchers have been able to quantify the amount of nitrogen reduced through environmental restoration efforts in Minebank Run in Baltimore County, Md.
Credit: UMCES

A team of researchers led by University of Maryland Center for Environmental Science researcher Dr. Sujay Kaushal has been among the first able to quantify the amount of excess nitrogen removed from an urban stream during environmental restoration projects. This breakthrough will allow environmental managers to accurately assess the pollution reducing benefits of stormwater management and urban stream restoration, and could lead to new nitrogen reduction opportunities as public works managers make repairs to our nation's aging urban infrastructure.

Related Articles


"The key to expanding urban stream restoration efforts nationwide is being able to quantify the environmental benefits gained from those efforts," said UMCES Chesapeake Biological Laboratory researcher Dr. Sujay Kaushal. "This research is opening the door to a new technology that has the potential to help improve water quality in our urban environment."

Using state-of-the-art techniques in a long-term study, Kaushal's team injected stable isotope tracers into restored and unrestored sections of an urban stream, and measured how microbes in the streambanks naturally absorb nitrate and convert it into inert nitrogen gas. By analyzing those samples, the team was able to determine in-the-field nitrogen reductions by stream microbes through a process known as denitrification.

The research showed that stream restoration techniques that "reconnected" the banks to the stream doubled nitrogen removal rates by microbes, and reduced nitrogen levels in ground water by 40%, contributing to significantly lower nitrogen levels in the stream compared to unrestored conditions. Getting water out of the stream channel into denitrification "hot spots" in floodplain wetlands helped improve water quality.

Nationwide, there is a growing need to reduce the amount of nutrients flowing into our coastal waters and restoration efforts are booming in areas adjacent to large urban population centers with acute nitrogen pollution problems, such as near Chesapeake Bay, Long Island Sound, Puget Sound and the Gulf of Mexico.

"Miles of streams will likely need to be restored in upcoming years as our nation's failing infrastructure needs repair," Kaushal said. "Much like our study sites, most of this aging infrastructure was built before current stormwater practices were adopted. When repairing the aging bridge supports and sewer lines that share urban streambeds, public works managers can easily make restoration design changes to improve stormwater management and also increase the stream's ability to reduce nitrogen pollution flowing downstream."

"The science of restoration ecology is still in its infancy, and a great deal of knowledge is needed to achieve objectives," Kausal added. "Large-scale nitrogen reductions are needed along with improved stream restoration techniques that treat water flowing from polluted streams to coastal waters. The trick will be for scientists to figure out what works and what doesn't as we rebuild our cities for future generations."

The article, "Effects of Stream Restoration on Denitrification in an Urbanizing Watershed," appears in the April edition of Ecological Applications, a journal of the Ecological Society of America. This work was supported by the U.S. Environmental Protection Agency Office of Research and Development and the National Science Foundation's Long-Term Ecological Research program.


Story Source:

The above story is based on materials provided by University of Maryland Center for Environmental Science. Note: Materials may be edited for content and length.


Cite This Page:

University of Maryland Center for Environmental Science. "Nutrient Pollution Reductions From Urban Stream Restoration Quantified." ScienceDaily. ScienceDaily, 6 May 2008. <www.sciencedaily.com/releases/2008/04/080430103945.htm>.
University of Maryland Center for Environmental Science. (2008, May 6). Nutrient Pollution Reductions From Urban Stream Restoration Quantified. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2008/04/080430103945.htm
University of Maryland Center for Environmental Science. "Nutrient Pollution Reductions From Urban Stream Restoration Quantified." ScienceDaily. www.sciencedaily.com/releases/2008/04/080430103945.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins