Featured Research

from universities, journals, and other organizations

Liver Molecule Found To Reduce Mortality During Sepsis

Date:
May 19, 2008
Source:
University of California - San Diego
Summary:
In research that solves the longest-standing mystery in glycobiology -- a field that studies complex sugar chains called glycans -- researchers have discovered that a molecule in the liver of all animals, called the Ashwell receptor, is critical in helping the body fight off the abnormal and lethal blood clotting caused by bacterial infection.

In research that solves the longest-standing mystery in glycobiology -- a field that studies complex sugar chains called glycans -- researchers at the University of California, San Diego School of Medicine have discovered that a molecule in the liver of all animals, called the Ashwell receptor, is critical in helping the body fight off the abnormal and lethal blood clotting caused by bacterial infection. Until now, it was suspected that this receptor might serve to remove abnormal proteins from circulation, but it wasn't understood which proteins were affected or what biological purpose this receptor served.

The study, published online in advance of publication in the June issue of Nature Medicine, shows that the Ashwell receptor plays an essential role in reducing coagulation abnormalities during infection and sepsis, significantly improving the probability of survival.

Sepsis, a life-threatening complication of bacterial infection in the blood, remains a major cause of death worldwide, according to the study's principal investigator, Jamey Marth, Ph.D., UCSD Professor of Cellular and Molecular Medicine and Investigator with the Howard Hughes Medical Institute. One of the major factors contributing to death in patients with sepsis is a condition called disseminated intravascular coagulation, which accelerates blood clotting.

UCSD researchers discovered that a protective response, triggered by the Ashwell receptor in the liver, limits this lethal side effect by reducing the levels of circulating blood coagulation factors, including platelets.

The bacterial pathogen Streptococcus pneumoniae (pneumococcus) is a leading cause of sepsis, especially in the young, the elderly and the immuno-compromised. The pneumococcus makes an enzyme called sialidase, which removes sugar molecules called sialic acid from host cells, and helps facilitate spread of the pathogen through the body. Using a mouse model of sepsis, the researchers found that the pneumococcal sialidase also removes sialic acid from circulating host factors involved in blood coagulation, including platelets and a glycoprotein called von Willebrand Factor (vWF). When this occurs, the Ashwell receptor recognizes the change in the glycoprotein structure and removes those pro-coagulation factors from circulation before they can cause increased blood coagulation.

The researchers made a breakthrough when they discovered that platelet counts and vWF that are reduced during pneumococcal infection remained high and unchanged in the absence of the Ashwell receptor. Pivotal results came when mice lacking the Ashwell receptor developed severe tissue and organ damage due to increased coagulation and died at significantly higher frequency and more rapidly than expected.

"This finding contradicts the prevailing notion that the low platelet count of sepsis is due to the consumption of coagulation factors caused by the pathogen and is therefore harmful," said Marth. "Rather, this low platelet count is due an adaptive response by the Ashwell receptor that is beneficial by reducing tissue damage and organ failure and thereby improving the chance of survival."

More than 35 years ago, researcher Gilbert Ashwell and colleagues discovered that the liver controls the removal of proteins in the bloodstream. The Ashwell receptor --also known as the hepatic asialoglycoprotein receptor -- was the first glycan-binding receptor, or lectin, ever discovered in animals.

"The Ashwell receptor is 'turned on' after birth, and this was a clue that it is needed for environmental and pathogenic challenges," said Marth.

"This research provides a whole new way of thinking about coagulation problems in sepsis produced by pneumococcus and related pathogens" said Victor Nizet, M.D., UCSD professor of pediatrics and pharmacy whose laboratory assisted in the study. "Drugs designed to support the normal capabilities of the Ashwell receptor in the liver would represent a new approach to limiting mortality in these life-threatening conditions."

Additional and important contributors to the study include lead author Prabbjit K. Grewal, at the Howard Hughes Medical Institute and UCSD Department of Cellular and Molecular Medicine; as well as Satoshi Uchiyama, at the UCSD Department of Pediatrics; and David Ditto, Nissi Varki, and Dzung T. Le in the UCSD Department of Pathology.

Funding for the research was provided in part by the National Institutes of Health. Dr. Marth's work is further supported by the Howard Hughes Medical Institute.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Liver Molecule Found To Reduce Mortality During Sepsis." ScienceDaily. ScienceDaily, 19 May 2008. <www.sciencedaily.com/releases/2008/05/080518152647.htm>.
University of California - San Diego. (2008, May 19). Liver Molecule Found To Reduce Mortality During Sepsis. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2008/05/080518152647.htm
University of California - San Diego. "Liver Molecule Found To Reduce Mortality During Sepsis." ScienceDaily. www.sciencedaily.com/releases/2008/05/080518152647.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins