Featured Research

from universities, journals, and other organizations

Without Enzyme, Biological Reaction Essential To Life Takes 2.3 Billion Years

Date:
November 11, 2008
Source:
University of North Carolina School of Medicine
Summary:
All biological reactions within human cells depend on enzymes. Their power as catalysts enables biological reactions to occur usually in milliseconds. But how slowly would these reactions proceed spontaneously, in the absence of enzymes -- minutes, hours, days? And why even pose the question?

All biological reactions within human cells depend on enzymes. Their power as catalysts enables biological reactions to occur usually in milliseconds. But how slowly would these reactions proceed spontaneously, in the absence of enzymes – minutes, hours, days? And why even pose the question?

Related Articles


One scientist who studies these issues is Richard Wolfenden, Ph.D., Alumni Distinguished Professor Biochemistry and Biophysics and Chemistry at the University of North Carolina at Chapel Hill. Wolfenden holds posts in both the School of Medicine and in the College of Arts and Sciences and is a member of the National Academy of Sciences.

In 1995, Wolfenden reported that without a particular enzyme, a biological transformation he deemed "absolutely essential" in creating the building blocks of DNA and RNA would take 78 million years.

"Now we've found a reaction that – again, in the absence of an enzyme – is almost 30 times slower than that," Wolfenden said. "Its half-life – the time it takes for half the substance to be consumed – is 2.3 billion years, about half the age of the Earth. Enzymes can make that reaction happen in milliseconds."

With co-author Charles A. Lewis, Ph.D., a postdoctoral scientist in his lab, Wolfenden published a report of their new findings recently in the online early edition of the Proceedings of the National Academy of Science. The study is also due to appear in the Nov. 11 print edition.

The reaction in question is essential for the biosynthesis of hemoglobin and chlorophyll, Wolfenden noted. But when catalyzed by the enzyme uroporphyrinogen decarboxylase, the rate of chlorophyll and hemoglobin production in cells "is increased by a staggering factor, one that's equivalent to the difference between the diameter of a bacterial cell and the distance from the Earth to the sun."

"This enzyme is essential for both plant and animal life on the planet," Wolfenden said. "What we're defining here is what evolution had to overcome, that the enzyme is surmounting a tremendous obstacle, a reaction half-life of 2.3 billion years."

Knowing how long reactions would take without enzymes allows biologists to appreciate their evolution as prolific catalysts, Wolfenden said. It also enables scientists to compare enzymes with artificial catalysts produced in the laboratory.

"Without catalysts, there would be no life at all, from microbes to humans," he said. "It makes you wonder how natural selection operated in such a way as to produce a protein that got off the ground as a primitive catalyst for such an extraordinarily slow reaction."

Experimental methods for observing very slow reactions can also generate important information for rational drug design based on cellular molecular studies.

"Enzymes that do a prodigious job of catalysis are, hands-down, the most sensitive targets for drug development," Wolfenden said. "The enzymes we study are fascinating because they exceed all other known enzymes in their power as catalysts."

Wolfenden has carried out extensive research on enzyme mechanisms and water affinities of biological compound. His work has also influenced rational drug design, and findings from his laboratory helped spur development of ACE inhibitor drugs, now widely used to treat hypertension and stroke. Research on enzymes as proficient catalysts also led to the design of protease inhibitors that are used to treat HIV infection.

"We've only begun to understand how to speed up reactions with chemical catalysts, and no one has even come within shouting distance of producing, or predicting the magnitude of, their catalytic power," Wolfenden said.

Support for this research came from the National Institute of General Medicine, a component of the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of North Carolina School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of North Carolina School of Medicine. "Without Enzyme, Biological Reaction Essential To Life Takes 2.3 Billion Years." ScienceDaily. ScienceDaily, 11 November 2008. <www.sciencedaily.com/releases/2008/11/081111073845.htm>.
University of North Carolina School of Medicine. (2008, November 11). Without Enzyme, Biological Reaction Essential To Life Takes 2.3 Billion Years. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2008/11/081111073845.htm
University of North Carolina School of Medicine. "Without Enzyme, Biological Reaction Essential To Life Takes 2.3 Billion Years." ScienceDaily. www.sciencedaily.com/releases/2008/11/081111073845.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins