Featured Research

from universities, journals, and other organizations

Burying Greenhouse Gases: New Tool Could Aid Safe Underground Storage Of Carbon Dioxide

Date:
November 22, 2008
Source:
Massachusetts Institute of Technology
Summary:
To prevent global warming, researchers and policymakers are exploring a variety of options to significantly cut the amount of carbon dioxide that reaches the atmosphere. One possible approach involves capturing greenhouse gases such as carbon dioxide at the source, then injecting them underground. Now engineers have come up with a new software tool to determine how much carbon dioxide can be sequestered safely in geological formations.

Schematic that illustrates the application of MIT's new mathematical model to the sequestration of carbon dioxide in the Powder River basin, between the states of Wyoming and Montana. Shown are a plan view (left) and a vertically magnified cross section of the basin (right). Carbon dioxide is injected from a line-drive array of wells (black line) fora period of decades. The extent of the CO2 plume at the end of the injection period is shown in dark blue. After injection, the plume continues to migrate in the direction of the regional groundwater flow(indicated by black arrows). During this process, part of the CO2 is trapped by capillary forces and left behind in the form of immobile blobs. The amount of CO2 injected in the basin is designed such that the footprint of the plume when all the CO2 is trapped (light blue) remains within the boundaries of the basin.
Credit: Image / Michael L. Szulczewski/Ruben Juanes; MIT

To prevent global warming, researchers and policymakers are exploring a variety of options to significantly cut the amount of carbon dioxide that reaches the atmosphere. One possible approach involves capturing greenhouse gases such as carbon dioxide at the source -- an electric power plant, for example -- and then injecting them underground.

While theoretically promising, the technique has never been tested in a full-scale industrial operation. But now MIT engineers have come up with a new software tool to determine how much CO2 can be sequestered safely in geological formations.

According to the 2007 MIT study, "The Future of Coal," and other sources, capturing CO2 at coal-burning power plants and storing it in deep geological basins will mitigate its negative effects on the atmosphere.

However, injecting too much CO2 could create or enlarge underground faults that may become conduits for CO2 to travel back up to the atmosphere, said Ruben Juanes, assistant professor of civil and environmental engineering (CEE) and one of the authors of the work. "Our model is a simple, effective way to calculate how much CO2 a basin can store safely. It is the first to look at large scales and take into account the effects of flow dynamics on the stored CO2," he said.

Already Juanes and co-author CEE graduate student Michael L. Szulczewski have applied their model to the Fox Hills Sandstone in the Powder River basin straddling Montana and Wyoming. They found that the formation would hold around 5 gigatons of CO2 -- more than half of all the CO2 emitted by the United States each year.

A geological basin is a large underground bowl between 100 and 1,000 kilometers wide and 5,000 kilometers deep that has filled over millennia with layers of sand, fine-grained clays, and other sediments that are eventually consolidated into porous rock. Some of the layers contain brine and are called deep saline aquifers. CO2 would be injected into the aquifers through wells.

The MIT model predicts how much a plume of CO2 will migrate from its injection well and the path it is likely to take due to underground slopes and groundwater flow.

"A lot of people have done studies at small scales," Szulczewski said. "If we're going to offset emissions, however, we're going to inject a lot of CO2 into the subsurface. This requires thinking at the basin scale."

"Despite the fact that our model applies at the basin scale, it is very simple. Using only pen and paper, you take geological parameters such as porosity, temperature and pressure to calculate storage capacity," Szulczewski said. "Other methods suffer from major shortcomings of accuracy, complexity or scale."

Juanes studies a phenomenon called capillary trapping, through which CO2, liquefied by the pressure of the Earth, is trapped as small blobs in the briny water (picture bubbles of oil in vinegar). The CO2 dispersed throughout the basin's structural pores eventually dissolves and reacts with reservoir rocks to precipitate out into harmless carbonate minerals.

CO2 has been sequestered in small pilot projects in Norway, Algeria and elsewhere. In 2004, 1,600 tons of CO2 were injected 1,500 meters into high-permeability brine-bearing sandstone of the Frio formation beneath the Gulf coast of Texas. Current proposals call for injecting billions of tons within the continental United States.

The work will be reported Nov. 18 at the 9th International Conference on Greenhouse Gas Control Technologies (GHGT-9), to be held Nov. 16-20 in Washington, D.C. The GHGT-9 conference is organized by MIT in collaboration with the IEA Greenhouse Gas R&D Programme (IEA GHG), with sponsorship from the U.S. Department of Energy. This research was supported by the McClelland Fund, administered by the MIT Energy Initiative, and by the Reed Research Fund.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Burying Greenhouse Gases: New Tool Could Aid Safe Underground Storage Of Carbon Dioxide." ScienceDaily. ScienceDaily, 22 November 2008. <www.sciencedaily.com/releases/2008/11/081117131711.htm>.
Massachusetts Institute of Technology. (2008, November 22). Burying Greenhouse Gases: New Tool Could Aid Safe Underground Storage Of Carbon Dioxide. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/11/081117131711.htm
Massachusetts Institute of Technology. "Burying Greenhouse Gases: New Tool Could Aid Safe Underground Storage Of Carbon Dioxide." ScienceDaily. www.sciencedaily.com/releases/2008/11/081117131711.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins