Featured Research

from universities, journals, and other organizations

Birds Singing In Slow Motion Help Reveal Brain Locations Responsible For Timing

Date:
November 21, 2008
Source:
Massachusetts Institute of Technology
Summary:
As anyone who watched the Olympics can appreciate, timing matters when it comes to complex sequential actions. It can make a difference between a perfect handspring and a fall, for instance. But what controls that timing? Scientists are closing in on the brain regions responsible, thanks to some technical advances and some help from songbirds.

An adult male zebra finch.
Credit: Photo courtesy / Michale Fee and Michael Long, MIT

As anyone who watched the Olympics can appreciate, timing matters when it comes to complex sequential actions. It can make a difference between a perfect handspring and a fall, for instance. But what controls that timing? MIT scientists are closing in on the brain regions responsible, thanks to some technical advances and some help from songbirds.

"All our movements, from talking and walking to acrobatics or piano playing, are sequential behaviors," explained Michale Fee, an investigator in the McGovern Institute for Brain Research at MIT and an associate professor in MIT's Department of Brain and Cognitive Sciences. "But we haven't had the necessary tools to understand how timing is generated within the brain."

Now Fee and colleagues report in the Nov. 13 issue of Nature a new method for altering the speed of brain activity. And using that technique, "we think we have found the clock that controls the timing of the bird's song," Fee said.

The zebra finch's song is widely studied as a model for understanding how the brain produces complex behavior sequences. Each song lasts about one second, and contains multiple syllables in a highly stereotypic sequence. Two brain regions -- the High Vocal Center (HVC) and the robust nucleus of the arcopallium (RA) -- are known to be important for singing, because deactivating either region prevents song production. But uncovering the clock mechanism required a more subtle method.

Accordingly, Fee's group devised a technique to slow down different parts of the brain. They took advantage of the fact that all biological processes are influenced by temperature. Just as molasses run slower in January, neurons function more slowly when they are cooled down.

The authors constructed a tiny Peltier cooling apparatus based on a device similar to those used in portable electronic beverage coolers. Then they used this device to produce a small cooling effect that could be localized to precise parts of the brain.

"We suspected that cooling different brain regions involved in singing might alter the song in different ways," explained first author Michael Long, a postdoctoral researcher in the Fee lab.

Cooling the RA brain region had almost no effect on the bird's song. But cooling HVC produced a dramatic effect. The song slowed in proportion to the degree of cooling, with the biggest temperature change (a 10 degrees Celsius reduction) causing the song to stretch out by around 30 percent.

Not only did the overall duration of the song increase, so did each individual syllable, so the overall rhythmic structure was preserved without changing the sounds within the song.

The effect can be compared to a music box or piano roll. Rotating the drum more slowly slows the tempo of the music without affecting individual notes.

Following this analogy, HVC corresponds to the mechanism that turns the drum; cooling it is equivalent to reducing the speed of rotation. RA, which receives timing information from HVC, corresponds to the read-out mechanism that translates the sequence of bumps or holes into a corresponding sequence of notes.

What intrigues Fee and colleagues now is: How does HVC work to control song timing? Their previous electrical recordings of individual HVC neurons suggest it functions like a cascade of falling dominoes, with waves of activity propagating at a fixed speed through the neural circuitry -- an idea they are now testing.

"We can also use this cooling technology to discover which brain regions control the timing of different complex behaviors in different animals, something that has been very difficult to assess until now," Fee said. "We know that HVC is related in some ways to [the] human cortex, so it could be showing us a very general mechanism for representing the passage of time within the brain."

This study was funded by the National Institutes of Health and the Human Frontiers Science Project.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Birds Singing In Slow Motion Help Reveal Brain Locations Responsible For Timing." ScienceDaily. ScienceDaily, 21 November 2008. <www.sciencedaily.com/releases/2008/11/081117134339.htm>.
Massachusetts Institute of Technology. (2008, November 21). Birds Singing In Slow Motion Help Reveal Brain Locations Responsible For Timing. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2008/11/081117134339.htm
Massachusetts Institute of Technology. "Birds Singing In Slow Motion Help Reveal Brain Locations Responsible For Timing." ScienceDaily. www.sciencedaily.com/releases/2008/11/081117134339.htm (accessed September 17, 2014).

Share This



More Mind & Brain News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
'Fat Shaming' Might Actually Cause Weight Gain

'Fat Shaming' Might Actually Cause Weight Gain

Newsy (Sep. 11, 2014) A study for University College London suggests obese people who are discriminated against gain more weight than those who are not. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins