Featured Research

from universities, journals, and other organizations

Genes That Made 1918 Flu Lethal Isolated

Date:
December 31, 2008
Source:
University of Wisconsin-Madison
Summary:
By mixing and matching a contemporary flu virus with the "Spanish flu" -- a virus that killed between 20 and 50 million people 90 years ago in history's most devastating outbreak of infectious disease -- researchers have identified a set of three genes that helped underpin the extraordinary virulence of the 1918 virus.

By mixing and matching a contemporary flu virus with the "Spanish flu" — a virus that killed between 20 and 50 million people 90 years ago in history's most devastating outbreak of infectious disease — researchers have identified a set of three genes that helped underpin the extraordinary virulence of the 1918 virus.

Writing December 29 in the Proceedings of the National Academy of Sciences, a team led by University of Wisconsin-Madison virologists Yoshihiro Kawaoka and Tokiko Watanabe identifies genes that gave the 1918 virus the capacity to reproduce in lung tissue, a hallmark of the pathogen that claimed more lives than all the battles of World War I combined.

"Conventional flu viruses replicate mainly in the upper respiratory tract: the mouth, nose and throat. The 1918 virus replicates in the upper respiratory tract, but also in the lungs," causing primary pneumonia among its victims, says Kawaoka, an internationally recognized expert on influenza and a professor of pathobiological sciences in the UW-Madison School of Veterinary Medicine. "We wanted to know why the 1918 flu caused severe pneumonia."

Autopsies of 1918 flu victims often revealed fluid-filled lungs severely damaged by massive hemorrhaging. Scientists assumed that the ability of the virus to take over the lungs is associated with the pathogen's high level of virulence, but the genes that conferred that ability were unknown.

Discovery of the complex and its role in orchestrating infection in the lungs is important because it could provide a way to quickly identify the potential virulence factors in new pandemic strains of influenza, Kawaoka says. The complex could also become a target for a new class of antiviral drugs, which is urgently needed as vaccines are unlikely to be produced fast enough at the outset of a pandemic to blunt its spread.

To find the gene or genes that enabled the virus to invade the lungs, Kawaoka and his group blended genetic elements from the 1918 flu virus with those of a currently circulating avian influenza virus and tested the variants on ferrets, an animal that mimics human flu infection.

For the most part, substituting single genes from the 1918 virus onto the template of a much more benign contemporary virus yielded agents that could only replicate in the upper respiratory tract. One exception, however, included a complex of three genes that, acting in concert with another key gene, allowed the virus to efficiently colonize lung cells and make RNA polymerase, a protein necessary for the virus to reproduce.

"The RNA polymerase is used to make new copies of the virus," Kawaoka explains. Without the protein, the virus is unable to make new virus particles and spread infection to nearby cells.

In the late 1990s, scientists were able to recover genes from the 1918 virus by looking in the preserved lung tissue of some of the pandemic's victims. Using the relic genes, Kawaoka's group was able to generate viruses that carry different combinations of the 1918 virus and modern seasonal influenza virus.

When tested, most of the hybrid viruses only infected the nasal passages of ferrets and didn't cause pneumonia. But one did infect the lungs, and it carried the RNA polymerase genes from the 1918 virus that allowed the virus to make the key step of synthesizing its proteins.

In 2004, Kawaoka and his team identified another key gene from the 1918 virus that enhanced the pathogen's virulence in mice. That gene makes hemagglutinin, a protein found on the surface of the virus and that confers on viral particles the ability to attach to host cells.

"Here, I think we are talking about another mechanism," Kawaoka says. The RNA polymerase is used to make copies of the virus once it has entered a host cell. The role of hemagglutinin is to help the virus gain access to cells.

In addition to the study's lead authors, Watanabe and Kawaoka, co-authors of the new PNAS paper are Shinji Watanabe, Jin Hyun Kim and Masato Hatta, also of UW-Madison; and Kyoko Shinya of Kobe University. The work was funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology and by grants-in-aid from the Ministry of Health, Labor and Welfare of Japan.


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Madison. "Genes That Made 1918 Flu Lethal Isolated." ScienceDaily. ScienceDaily, 31 December 2008. <www.sciencedaily.com/releases/2008/12/081229200738.htm>.
University of Wisconsin-Madison. (2008, December 31). Genes That Made 1918 Flu Lethal Isolated. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2008/12/081229200738.htm
University of Wisconsin-Madison. "Genes That Made 1918 Flu Lethal Isolated." ScienceDaily. www.sciencedaily.com/releases/2008/12/081229200738.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins