Featured Research

from universities, journals, and other organizations

Link Between Control Of Chromosome Duplication And Segregation Discovered

Date:
February 17, 2009
Source:
Cold Spring Harbor Laboratory
Summary:
A dividing cell duplicates its chromosomes and its centrosome, an organelle that helps divide the two sets of chromosomes equally to daughter cells, just once. Extra centrosome copies can lead to incorrect distribution of chromosomes, genomic instability and cancer. Now scientists have identified the protein that controls the copying of the centrosome and prevents it from being re-duplicated.

Before a cell can divide into two, first it must duplicate its genetic material--the DNA packed in its chromosomes. The two new sets of chromosomes then have to be separated from one another and correctly distributed to the resulting "daughter" cells, so that both daughter cells are genetically identical to the original, or "parent," cell.

Related Articles


During cell division, a cellular organ called the centrosome, and a copy of the centrosome, position themselves at opposite ends of the dividing cell. Each centrosome serves as an anchor for a spindle, a complex structure of filament-like tubules that radiates out from each centrosome and connects with special sites called centromeres on the chromosomes. By pulling on the chromosomes, the spindles separate them into two sets, each divided equally into the two emerging daughter cells.

It's crucial that cells duplicate their centrosome only once during each division cycle. Extra copies can result in incorrect distribution of chromosomes, which can lead to genomic instability and cancer. Hence the importance of new research by Professor Bruce Stillman, Ph.D., and his lab group at Cold Spring Harbor Laboratory (CSHL). They have identified a protein molecule that controls the copying of the centrosome in human cells and prevents it from being re-duplicated. Their findings will appear in the February 6th issue of the journal Science.

Double duty for Orc1

The molecule shown by Dr. Stillman and his colleagues to control centrosome duplication is Orc1, one of six proteins that comprise the Origin Recognition Complex. ORC, as it is called, is an assembly that attaches to particular sequences within all the DNA in the cell and prepares it for duplication. Recently it had become clear that some ORC proteins might be doing more than jump-starting DNA duplication; the accumulation of extra centrosome copies in cells that lack ORC suggested that some or all ORC proteins might play a role in centrosome duplication as well.

To investigate which of the ORC proteins limit centrosome copying, Stillman and co-investigators Adriana Hemerly, Supriya Prasanth and Khalid Siddiqui, used RNA interference, or RNAi, a technique that uses small pieces of RNA to shut off specific genes. They blocked the production of each of the proteins that combine to form ORC in human cells. Loss of Orc1 alone, the scientists found, spurred cells to accumulate excess centrosomes.

Cells that were induced to produce more Orc1, on the other hand, had the normal amount of centrosomes, even when centrosomes were induced to re-duplicate via drug treatment of cells. It was thus deduced that Orc1 allows cells to duplicate centrosomes once per division cycle, but prevents centrosomes from being re-duplicated.

This new role for Orc1 seems to be separate from its duties in helping cells copy DNA. The CSHL team found that a shortened version of Orc1 that lacked the ability to start DNA duplication was still able to limit centrosome copying to once per cell-division cycle.

Orc1 forces new centrosomes to stay in touch

Within each centrosome are a pair of tiny machines called centrioles. These duplicate during cell division to produce two centriole pairs. Stillman's laboratory found that Orc1 also controls the number of centrioles in a cell. Before a pair is copied, the two centrioles normally stay connected to each other. Upon the cell's commitment to cell division, however, the centriole pair is duplicated to produce two new centriole pairs; this occurs precisely as copying of the chromosomes gets under way.

Stillman's team hypothesizes that it is this "engagement" of the paired centrioles that stops the original centriole pair from duplicating. In cells that lacked Orc1, the CSHL scientists found that the centrioles were "disengaged" from the original, suggesting that Orc1 might prevent re-duplication by helping the new centrosomes to stay connected to the old.

This function of Orc1 depends on its ability to physically associate with the centrosomes, the researchers showed. They suggest that Orc1 is ferried to the centrosomes by the action of a protein known as Cyclin A. This protein is found at high levels in cells at the start of the division cycle and helps cells make one copy of their DNA.

But a related protein called Cyclin E may be the target of Orc1. Cyclin E, which was also found to associate with Orc1, is known to be required for centriole and centrosome duplication and also stimulates the duplication of DNA in chromosomes. Orc1 antagonizes Cyclin E activity so that it duplicates centrosomes but cannot re-duplicate them.

The scientists thus propose that Orc1 enforces the number of centrosome copies by moving to centrosomes during the short temporal window in the cell division cycle when Cyclin E is still present in the cell. "During this time, if the effects of Cyclin E activity aren't counteracted by Orc1, centrosome re-duplication can occur," explains Stillman.

"I also think that this discovery suggests an ancient link between the processes that duplicate DNA and the processes that separate the DNA in cells before cell division," he added.



Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Adriana S. Hemerly, Supriya G. Prasanth, Khalid Siddiqui and Bruce Stillman. Orc1 controls centriole and centrosome copy number in human cells. Science, February 6, 2009

Cite This Page:

Cold Spring Harbor Laboratory. "Link Between Control Of Chromosome Duplication And Segregation Discovered." ScienceDaily. ScienceDaily, 17 February 2009. <www.sciencedaily.com/releases/2009/02/090205174544.htm>.
Cold Spring Harbor Laboratory. (2009, February 17). Link Between Control Of Chromosome Duplication And Segregation Discovered. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2009/02/090205174544.htm
Cold Spring Harbor Laboratory. "Link Between Control Of Chromosome Duplication And Segregation Discovered." ScienceDaily. www.sciencedaily.com/releases/2009/02/090205174544.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Red Panda Cubs Explore the Bratislava Zoo

Red Panda Cubs Explore the Bratislava Zoo

AFP (Nov. 24, 2014) Four-month old Red Panda twins Pim and Pam still rely on their mother for breast milk at the Bratislava Zoo in Slovakia, but the precocious cubs have begun to branch out to solid foods, as well. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins