Featured Research

from universities, journals, and other organizations

First Look At Genetic Dynamics Of Inbreeding Depression

Date:
March 13, 2009
Source:
University of Illinois at Urbana-Champaign
Summary:
Declines in reproductive success due to inbreeding are probably due to a few key genes that influence other genes, said an animal biology professor.

Declines in reproductive success due to inbreeding are probably due to a few key genes that influence other genes, said Illinois animal biology professor and department head Ken Paige, who led the study.
Credit: Photo by L. Brian Stauffer

Researchers have taken a first look at the broad genetic changes that accompany reproductive declines in inbred populations.

Although scientists have known for more than a century that small populations of closely related plants or animals are likely to suffer from low reproductive success, the exact mechanism by which this “inbreeding depression” occurs is still the subject of debate.

The new study, in Conservation Biology, is the first to look at inbreeding depression as it relates to the expression of all of an organism’s genes – to see which are more or less active in inbred populations and what they do.

By mating male and female fruit flies that were genetically identical to one another, researchers at the University of Illinois were able to determine how much the flies’ genetic likeness reduced their reproductive success. They repeated the experiment in six lines of fruit flies that were identical to one another except for the composition of one of their chromosomes; only the genes of chromosome three differed between the lines.

The researchers also crossed the three highest inbred lines to one another, creating outbred lines that could be compared with the inbred ones.

Using oligonucleotide microarrays, which can measure the activity of all of an organism’s genes at once, the researchers were able to see which genes were more or less active (up-regulated or down-regulated) in the inbred versus the outbred lines.

The six inbred lines of fruit flies showed a lot of variation in the degree of inbreeding depression, from 24 to 79 percent when compared with non-inbred flies. The researchers also found that 567 genes in the high inbreeding depression lines were expressed at higher or lower levels than the same genes in the other inbred lines. Only 62 percent of these genes were located on chromosome three (the only chromosome that differed between the lines) indicating that variation in chromosome three had altered gene expression on the other chromosomes.

“These results suggest that a significant amount of inbreeding depression is due to a few key genes that affect the expression of other genes,” said animal biology professor and department head Ken Paige, who led the study.

Of particular note were identical changes in the expression of 46 genes in all three of the high inbreeding depression lines, Paige said, making them of interest for further study.

Genes associated with inbreeding depression could be grouped into three broad categories of function: those involved in metabolism, stress, and defense. This is a surprising finding, Paige said, “because we think of inbreeding as a random process.”

Many metabolic genes were up-regulated in the inbred flies, as were genes that fight pathogens such as bacteria or viruses. A third group of genes was down-regulated. They code for proteins that protect the body from reactive atoms and molecules that can damage cells.

These changes in gene expression are shunting energy away from reproduction and undermining some basic cellular functions, Paige said.

Inbreeding depression is thought to result from a deleterious pattern of inherited genes. In general, an organism with two parents has two versions of every gene – one maternal and one paternal. These different flavors of a gene are called alleles. If the maternal and paternal alleles differ, one of them usually dominates, conferring all of its qualities to the offspring. The other, silenced allele is called “recessive.”

Some alleles are detrimental to health. Most of these are recessive, meaning that they do not cause problems unless the organism inherits two copies of them – one from each parent. When the alleles differ, one (the dominant allele) often masks the deleterious effects of the other.

But the interaction of parental alleles in their offspring can be quite complex. Sometimes an allele causes a disease or disorder even if it is paired with a different allele. Sometimes several genes influence a single trait. And sometimes two different alleles can lead to a higher level of gene activity than occurs in either parent (this last phenomenon is called overdominance).

When closely related individuals mate, their offspring are likely to end up with identical alleles for many traits. Many potentially harmful recessive alleles are no longer masked by dominant alleles, so more genetic disorders arise. Similarly, offspring that inherit two identical alleles for some traits will also lose any advantages once conferred by overdominance.

Biologists have long wondered which of these mechanisms causes the reproductive failures seen in inbred populations. “It’s still being debated,” Paige said.

The new study found that about 75 percent of the reproductive declines seen in the inbred flies could be attributed to the loss of dominant alleles and the subsequent “unmasking” of deleterious alleles. More surprisingly, the data also indicated that 25 percent of the declines were due to the loss of overdominance.

“That means we have two mechanisms ongoing,” Paige said. “One does predominate, but the other may be important, too.”

The fact that a relatively large number of genes are affected by inbreeding is bad news for conservationists hoping to save small populations of plants or animals from extinction, Paige said.

It means that there is no easy fix to the problem of inbred populations. The best approach is to try to preserve and maintain genetic diversity in natural populations well before they begin their slide into an “extinction vortex,” he said.

Co-authors on the study included natural resources and environmental sciences graduate student Julien Ayroles, animal biology professor Kimberly Hughes, animal biology doctoral student Kevin Rowe, animal biology technician Melissa Reedy, animal biology postdoctoral researcher Jenny Drnevich, animal biology professor Carla Cαceres, and animal sciences professor Sandra Rodriguez-Zas, who is also an affiliate of the Institute for Genomic Biology.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "First Look At Genetic Dynamics Of Inbreeding Depression." ScienceDaily. ScienceDaily, 13 March 2009. <www.sciencedaily.com/releases/2009/03/090312125403.htm>.
University of Illinois at Urbana-Champaign. (2009, March 13). First Look At Genetic Dynamics Of Inbreeding Depression. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2009/03/090312125403.htm
University of Illinois at Urbana-Champaign. "First Look At Genetic Dynamics Of Inbreeding Depression." ScienceDaily. www.sciencedaily.com/releases/2009/03/090312125403.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) — Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) — Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) — At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Raw: Otters Enjoy Water Slides at Japan Zoo

Raw: Otters Enjoy Water Slides at Japan Zoo

AP (July 30, 2014) — River otters were hitting the water slides to beat the summer heatwave on Wednesday at Ichikawa City's Zoological and Botanical Garden. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins